

THE MFC TUTORIALS

The MFC stands for Microsoft Foundation Class. Here are some tutorials for MFC:

The Complete MFC Guide (BIG GUIDE)

Introduction to MFC with Visual C++
New And cool in MFC
MFC and Visual C++ 5

Advanced MFC Programming

Table of Contents

CHAPTER 1. Tool Bar and Dialog Bar

1.1. Adding an Extra Docking Tool Bar

1.2. Imitating the Behavior of Radio Buttons

1.3. Check Box Implementation

1.4. Message Mapping for a Contiguous Range of Command IDs

1.5. Fixing the Size of Tool Bar

1.6. Adding Combo Box to Tool Bar

1.7. Modifying the Default Styles of Tool Bar

1.8. Dialog Bar

1.9. Resizable Dialog Bar

1.10. Adding Flyby and Tool Tip

1.11. Toggling Control Bars On/Off

CHAPTER 2. Menu

2.1 Message WM_COMMAND and UPDATE_COMMAND_UI

2.2 Right Click Pop Up Menu

2.3 Updating Menu Dynamically

2.4 Bitmap Check

2.5 System Menu and Bitmap Menu Item

2.6 Owner-Draw Menu

2.7 Changing the Whole Menu Dynamically

CHAPTER 3. Splitter Window

3.1 Implementing Static Splitter Windows

3.2 Dynamic Splitter Window

3.3 Customizing the Behavior of Split Bar

3.4 Customizing the Default Appearance

3.5 Splitter Window That Can’t be Resized by Tracking

CHAPTER 4. Buttons

4.1 Bitmap Button: Automatic Method

4.2 Bitmap Check Box and Radio Button: Method 1

4.3 Subclass

4.4 Bitmap Check Box and Radio Button: Method 2

4.5 Irregular Shape Bitmap Button

4.6 Making Button Aware of Mouse Position

4.7 Mouse Sensitive Button

CHAPTER 5. Common Controls

5.1 Spin Control

5.2 Customizing the Properties of Spin Control

5.3 Displaying Text Strings in the Buddy Window

5.4 Bitmap Button Buddy

5.5 Slider

5.6 List Box

5.7 Handling List Box Messages

5.8 Combo Box

5.9 Trapping RETURN key strokes for the Combo Box

5.10 Implementing Subclass for the Edit Box of a Combo Box

5.11 Owner Draw List Box and Combo Box

5.12 Tree Control

5.13 Handling Tree Control Messages

5.14 Drag-n-Drop

5.15 List Control

5.16 Tab Control

5.17 Animate Control and Progress Control

CHAPTER 6. Dialog Box

6.1 Modeless Dialog Box

6.2 Property Sheet

6.3 Modeless Property Sheet

6.4 Sizes

6.5 Customizing Dialog Box Background

6.6 Resizing the Form View

6.7 Tool Tips

6.8 Tool Bar and Status Bar in Dialog Box

CHAPTER 7. Common Dialog Boxes

7.1 File Open and Save Dialog Box

7.2 More Customizations

7.3 Selecting Only Directory

7.4 Adding File Preview

7.5 Color Dialog Box

7.6 Custom Dialog Box Template

7.7 Font Dialog Box

7.8 Customizing Dialog Box Template

7.9 Modeless Common Dialog Boxes

CHAPTER 8. DC, Pen, Brush and Palette

8.0 Device Context & GDI Objects

8.1 Line

8.2 Rectangle and Ellipse

8.3 Curve

8.4 Other Shapes

8.5 Flood Fill

8.6 Pattern Brush

8.7 Color Approximation

8.8 Logical Palette

8.9 Monitoring System Palette

8.10 Palette Animation

8.11 Find Out Device Capability

CHAPTER 9. Font

9.1 Outputting Text Using Different Fonts

9.2 Enumerating Fonts in the System

9.3 Output Text Using CDC::ExtTextOut(…)

9.4 One-Line Text Editor, Step 1: Displaying a Static String

9.5 One Line Text Editor, Step 2: Adding Caret

9.6 One Line Text Editor, Step 3: Enabling Input

9.7 One Line Text Editor, Step 4: Caret Moving & Cursor Shape

9.8 One Line Text Editor, Step 5: Selection

9.9 One Line Text Editor, Step 6: Cut, Copy and Paste

9.10 One Line Text Editor, Step 7: Getting Rid of Flickering

CHAPTER 10. Bitmap

10.1 BitBlt and StretchBlt

10.2 Extracting Palette from DIB

1.3 Loading DIB from File

10.4 Saving DDB to File

10.5 Drawing DIB Directly

10.6 Bitmap Format Conversion: 256-color to 24-bit

10.7 Converting 24-bit Format to 256-color Format

10.8 Pixel Manipulation

10.9 DIB Section: Using Both DIB and DDB

10.10 Creating Chiseled Effect

CHAPTER 11. Sample: Simple Paint

11.0 Preparation

11.1 Ratio and Grid

11.2 Color Selection

11.3 Simple Drawing

11.4 Tracker

11.5 Moving the Selected Image

11.6 Region

11.7 Path

11.8 Freeform Selection

11.9 Cut, Copy and Paste

11.10 Palette Change & Flickering

CHAPTER 12. Screen Capturing & Printing

12.1 Capturing the Whole Screen

12.2 Capturing a Specified Window

12.3 Simple Printing

12.4 Fixed Scale Printing

12.5 Printing on Separate Pages

12.6 Customizing Print Dialog Box

CHAPTER 13. Adding Special Features to Application

13.1 One Instance Application

13.2 Creating Applications without Using Document/View Structure

13.3 Implementing Multiple Views

13.4 Multiple Documents Implementation

13.5 Painting Caption Bar

13.6 Irregular Shape Window

13.7 Saving Initial States

13.8 Exchanging User-Defined Messages Among Applications

13.9 Z-Order

13.10 Hook

13.11 Journal Record and Journal Playback Hooks

13.12 Memory Sharing Among Processes

CHAPTER 14. Views

14.1 Edit View

14.2 Rich Edit View

14.3 Simple Explorer, Step 1: Preparation

14.4 Simple Explorer, Step 2: List Drives

14.5 Simple Explorer, Step 3: Listing Directories

14.6 Simple Explorer, Step 4: Displaying Files

14.7 Simple Explorer, Step 5: Displaying Registered Icons

14.8 Simple Explorer, Step 6: Clicking and Double Clicking

14.9 Simple Explorer, Step 7: File Sort

14.10 Using Form View

CHAPTER 15. DDE

15.1 DDE Registration

15.2 Connecting to Server

15.3 Transaction: Data Request

15.4 Transaction: Advise

15.5 Transactions: Poke and Execute

15.6 Asynchronous Transaction

15.7 Program Manager: A DDE Server

CHAPTER 16. Context Sensitive Help

16.1 Context Sensitive Help for Menu Commands

16.2 Context Sensitive Help for Common Controls

Introduction to MFC Programming with Visual C++
v5.x

Introduction to MFC

Visual C++ is much more than a compiler. It is a complete application development
environment that, when used as intended, lets you fully exploit the object oriented nature of
C++ to create professional Windows applications. In order to take advantage of these
features, you need to understand the C++ programming language. If you have never used
C++, please turn to the C++ tutorials in the C/C++ Tutorials page for an introduction. You
must then understand the Microsoft Foundation Class (MFC) hierarchy. This class hierarchy
encapsulates the user interface portion of the Windows API, and makes it significantly easier
to create Windows applications in an object oriented way. This hierarchy is available for and
compatible with all versions of Windows. The code you create in MFC is extremely portable.

These tutorials introduce the fundamental concepts and vocabulary behind MFC and event
driven programming. In this tutorial you will enter, compile, and run a simple MFC program
using Visual C++. Tutotial 2 provides a detailed explanation of the code used in Tutorial 1.
Tutorial 3 discusses MFC controls and their customization. Tutorial 4 covers message maps,
which let you handle events in MFC.

What is the Microsoft Foundations Class Library?

Let's say you want to create a Windows application. You might, for example, need to create a
specialized text or drawing editor, or a program that finds files on a large hard disk, or an
application that lets a user visualize the interrelationships in a big data set. Where do you
begin?

A good starting place is the design of the user interface. First, decide what the user should
be able to do with the program and then pick a set of user interface objects accordingly. The
Windows user interface has a number of standard controls, such as buttons, menus, scroll
bars, and lists, that are already familiar to Windows users. With this in mind, the programmer
must choose a set of controls and decide how they should be arranged on screen. A time-
honored procedure is to make a rough sketch of the proposed user interface (by tradition on
a napkin or the back of an envelope) and play with the elements until they feel right. For
small projects, or for the early prototyping phase of a larger project, this is sufficient.

The next step is to implement the code. When creating a program for any Windows platform,
the programmer has two choices: C or C++. With C, the programmer codes at the level of the
Windows Application Program Interface (API). This interface consists of a collection of
hundreds of C functions described in the Window's API Reference books. For Window's NT,
the API is typically referred to as the "Win32 API," to distinguish it from the original 16-bit API
of lower-level Windows products like Windows 3.1.

Microsoft also provides a C++ library that sits on top of any of the Windows APIs and makes
the programmer's job easier. Called the Microsoft Foundation Class library (MFC), this
library's primary advantage is efficiency. It greatly reduces the amount of code that must be
written to create a Windows program. It also provides all the advantages normally found in
C++ programming, such as inheritance and encapsulation. MFC is portable, so that, for
example, code created under Windows 3.1 can move to Windows NT or Windows 95 very
easily. MFC is therefore the preferred method for developing Windows applications and will
be used throughout these tutorials.

When you use MFC, you write code that creates the necessary user interface controls and
customizes their appearance. You also write code that responds when the user manipulates
these controls. For example, if the user clicks a button, you want to have code in place that
responds appropriately. It is this sort of event-handling code that will form the bulk of any
application. Once the application responds correctly to all of the available controls, it is
finished.

You can see from this discussion that the creation of a Windows program is a straightforward
process when using MFC. The goal of these tutorials is to fill in the details and to show the
techniques you can use to create professional applications as quickly as possible. The Visual
C++ application development environment is specifically tuned to MFC, so by learning MFC
and Visual C++ together you can significantly increase your power as an application
developer.

Windows Vocabulary

The vocabulary used to talk about user interface features and software development in
Windows is basic but unique. Here we review a few definitions to make discussion easier for
those who are new to the environment.

Windows applications use several standard user controls:

Static text labels
Push buttons
List boxes
Combo boxes (a more advanced form of list)
Radio boxes

Check boxes
Editable text areas (single and multi-line)
Scroll bars

You can create these controls either in code or through a "resource editor" that can create
dialogs and the controls inside of them. In this set of tutorials we will examine how to create
them in code. See the tutorials on the AppWizard and ClassWizard on the MFC Tutorials
page for an introduction to the resource editor for dialogs.

Windows supports several types of application windows. A typical application will live inside a
"frame window". A frame window is a fully featured main window that the user can re-size,
minimize, maximize to fill the screen, and so on. Windows also supports two types of dialog
boxes: modal and modeless. A modal dialog box, once on the screen, blocks input to the rest
of the application until it is answered. A modeless dialog box can appear at the same time as
the application and seems to "float above" it to keep from being overlaid.

Most simple Windows applications use a Single Document Interface, or SDI, frame. The
Clock, PIF editor, and Notepad are examples of SDI applications. Windows also provides an
organizing scheme called the Multiple Document Interface, or MDI for more complicated
applications. The MDI system allows the user to view multiple documents at the same time
within a single instance of an application. For example, a text editor might allow the user to
open multiple files simultaneously. When implemented with MDI, the application presents a
large application window that can hold multiple sub-windows, each containing a document.
The single main menu is held by the main application window and it applies to the top-most
window held within the MDI frame. Individual windows can be iconified or expanded as
desired within the MDI frame, or the entire MDI frame can be minimized into a single icon on
the desktop. The MDI interface gives the impression of a second desktop out on the desktop,
and it goes a long way towards organizing and removing window clutter.

Each application that you create will use its own unique set of controls, its own menu
structure, and its own dialog boxes. A great deal of the effort that goes into creating any good
application interface lies in the choice and organization of these interface objects. Visual
C++, along with its resource editors, makes the creation and customization of these interface
objects extremely easy.

Event-driven Software and Vocabulary

All window-based GUIs contain the same basic elements and all operate in the same way.
On screen the user sees a group of windows, each of which contains controls, icons, objects
and such that are manipulated with the mouse or the keyboard. The interface objects seen
by the user are the same from system to system: push buttons, scroll bars, icons, dialog
boxes, pull down menus, etc. These interface objects all work the same way, although some
have minor differences in their "look and feel." For example, scroll bars look slightly different
as you move from Windows to the Mac to Motif, but they all do the same thing.

From a programmer's standpoint, the systems are all similar in concept, although they differ
radically in their specifics. To create a GUI program, the programmer first puts all of the
needed user interface controls into a window. For example, if the programmer is trying to
create a simple program such as a Fahrenheit to Celsius converter, then the programmer
selects user interface objects appropriate to the task and displays them on screen. In this
example, the programmer might let the user enter a temperature in an editable text area,
display the converted temperature in another un-editable text area, and let the user exit the
program by clicking on a push-button labeled "quit".

As the user manipulates the application's controls, the program must respond appropriately.
The responses are determined by the user's actions on the different controls using the
mouse and the keyboard. Each user interface object on the screen will respond to events
differently. For example, if the user clicks the Quit button, the button must update the screen
appropriately, highlighting itself as necessary. Then the program must respond by quitting.
Normally the button manages its appearance itself, and the program in some way receives a
message from the button that says, "The quit button was pressed. Do something about it."
The program responds by exiting.

Windows follows this same general pattern. In a typical application you will create a main
window and place inside it different user interface controls. These controls are often referred
to as child windows-each control is like a smaller and more specialized sub-window inside
the main application window. As the application programmer, you manipulate the controls by
sending messages via function calls, and they respond to user actions by sending messages
back to your code.

If you have never done any "event-driven" programming, then all of this may seem foreign to
you. However, the event-driven style of programming is easy to understand. The exact
details depend on the system and the level at which you are interfacing with it, but the basic
concepts are similar. In an event-driven interface, the application paints several (or many)
user interface objects such as buttons, text areas, and menus onto the screen. Now the
application waits-typically in a piece of code called an event loop-for the user to do
something. The user can do anything to any of the objects on screen using either the mouse
or the keyboard. The user might click one of the buttons, for example. The mouse click is
called an event. Event driven systems define events for user actions such as mouse clicks
and keystrokes, as well as for system activities such as screen updating.

At the lowest level of abstraction, you have to respond to each event in a fair amount of
detail. This is the case when you are writing normal C code directly to the API. In such a
scenario, you receive the mouse-click event in some sort of structure. Code in your event
loop looks at different fields in the structure, determines which user interface object was
affected, perhaps highlights the object in some way to give the user visual feedback, and
then performs the appropriate action for that object and event. When there are many objects
on the screen the application becomes very large. It can take quite a bit of code simply to
figure out which object was clicked and what to do about it.

Fortunately, you can work at a much higher level of abstraction. In MFC, almost all these low-
level implementation details are handled for you. If you want to place a user interface object
on the screen, you create it with two lines of code. If the user clicks on a button, the button
does everything needed to update its appearance on the screen and then calls a pre-
arranged function in your program. This function contains the code that implements the
appropriate action for the button. MFC handles all the details for you: You create the button
and tell it about a specific handler function, and it calls your function when the user presses
it. Tutorial 4 shows you how to handle events using message maps

An Example

One of the best ways to begin understanding the structure and style of a typical MFC
program is to enter, compile, and run a small example. The listing below contains a simple
"hello world" program. If this is the first time you've seen this sort of program, it probably will
not make a lot of sense initially. Don't worry about that. We will examine the code in detail in
the next tutorial. For now, the goal is to use the Visual C++ environment to create, compile
and execute this simple program.

//hello.cpp

#include <afxwin.h>

// Declare the application class

class CHelloApp : public CWinApp

{

public:

 virtual BOOL InitInstance();

};

// Create an instance of the application class

CHelloApp HelloApp;

// Declare the main window class

class CHelloWindow : public CFrameWnd

{

 CStatic* cs;

public:

 CHelloWindow();

};

// The InitInstance function is called each

// time the application first executes.

BOOL CHelloApp::InitInstance()

{

 m_pMainWnd = new CHelloWindow();

 m_pMainWnd->ShowWindow(m_nCmdShow);

 m_pMainWnd->UpdateWindow();

 return TRUE;

}

// The constructor for the window class

CHelloWindow::CHelloWindow()

{

 // Create the window itself

 Create(NULL,

 "Hello World!",

 WS_OVERLAPPEDWINDOW,

 CRect(0,0,200,200));

 // Create a static label

 cs = new CStatic();

 cs->Create("hello world",

 WS_CHILD|WS_VISIBLE|SS_CENTER,

 CRect(50,80,150,150),

 this);

}

This small program does three things. First, it creates an "application object." Every MFC
program you write will have a single application object that handles the initialization details of
MFC and Windows. Next, the application creates a single window on the screen to act as the
main application window. Finally, inside that window the application creates a single static
text label containing the words "hello world". We will look at this program in detail in the next
tutorial to gain a complete understanding of its structure.

The steps necessary to enter and compile this program are straightforward. If you have not
yet installed Visual C++ on your machine, do so now. You will have the option of creating
standard and custom installations. For the purposes of these tutorials a standard installation
is suitable and after answering two or three simple questions the rest of the installation is
quick and painless.

The compilation instructions supplied here apply specifically to Visual C++ version 5.x under
Windows NT or Windows 95. If you are using Visual C++ version 1.5, 2.x, 4.x, or 6.x then
you will want to see the tutorials for these versions on the MFC Tutorials page.

Start VC++ by double clicking on its icon in the Visual C++ group of the Program Manager. If
you have just installed the product, you will see an empty window with a menu bar. If VC++
has been used before on this machine, it is possible for it to come up in several different
states because VC++ remembers and automatically reopens the project and files in use the
last time it exited. What we want right now is a state where it has no project or code loaded.
If the program starts with a dialog that says it was unable to find a certain file, clear the dialog
by clicking the "No" button. Go to the Window menu and select the Close All option if it is
available. Go to the File menu and select the Close option if it is available to close any
remaining windows. Now you are at the proper starting point. If you have just installed the
package, you will see a window that looks something like this:

This screen can be rather intimidating the first time you see it. To eliminate some of the
intimidation, click on the lower of the two "x" buttons that you see in the upper right hand
corner of the screen if it is available. This action will let you close the "InfoViewer Topic"
window. You may later get that window back if you desire by clicking on the little house
button in the InfoViewer toolbar. If you want to get rid of the InfoViewer toolbar as well, you
can drag it so it docks somewhere along the side of the window, or close it and later get it
back by choosing the Customize option in the Tools menu.

What you see now is "normal". Along the top is the menu bar and several toolbars. Along the
left side are all of the topics available from the on-line book collection (you might want to
explore by double clicking on several of the items you see there - the collection of information
found in the on-line books is gigantic). Along the bottom is a status window where various
messages will be displayed.

Now what? What you would like to do is type in the above program, compile it and run it.

Before you start, switch to the File Manager (or the MS-DOS prompt) and make sure your
drive has at least five megabytes of free space available. Then take the following steps.

Creating a Project and Compiling the Code

In order to compile any code in Visual C++, you have to create a project. With a very small
program like this the project seems like overkill, but in any real program the project concept is
quite useful. A project holds three different types of information:

1. It remembers all of the source code files that combine together to create one
executable. In this simple example, the file HELLO.CPP will be the only source file, but
in larger applications you often break the code up into several different files to make it
easier to understand (and also to make it possible for several people to work on it
simultaneously). The project maintains a list of the different source files and compiles
all of them as necessary each time you want to create a new executable.

2. It remembers compiler and linker options particular to this specific application. For
example, it remembers which libraries to link into the executable, whether or not you
want to use pre-compiled headers, and so on.

3. It remembers what type of project you wish to build: a console application, a windows
application, etc.

If you are familiar with makefiles, then it is easy to think of a project as a machine-generated
makefile that has a very easy-to-understand user interface to manipulate it. For now we will
create a very simple project file and use it to compile HELLO.CPP.

To create a new project for HELLO.CPP, choose the New option in the File menu. Under the
Projects tab, highlight Win32 Application. In the Location field type an appropriate path
name or click the Browse button. Type the word "hello" in for the project name, and you will
see that word echoed in the Location field as well. Click the OK button. Visual C++ will create
a new subdirectory named HELLO and place the project files named HELLO.OPT,
HELLO.NCB, HELLO.DSP, and HELLO.DSW in that directory. If you quit and later want to
reopen the project, double-click on HELLO.DSW.

The area along the left side of the screen will now change so that three tabs are available.
The InfoView tab is still there, but there is now also a ClassView and a FileView tab. The
ClassView tab will show you a list of all of the classes in your application and the FileView
tab gives you a list of all of the files in the project.

Now it is time to type in the code for the program. In the File menu select the New option to
create a new editor window. In the dialog that appears, make sure the Files tab is active and
request a "Text File". Visual C++ comes with its own intelligent C++ editor, and you will use it
to enter the program shown above. Type the code in the listing into the editor window. You
will find that the editor automatically colors different pieces of text such as comments, key
words, string literals, and so on. If you want to change the colors or turn the coloring off, go
to the Options option in the Tools menu, choose the Format tab and select the Source

Windows option from the left hand list. If there is some aspect of the editor that displeases
you, you may be able to change it using the Editor tab of the Options dialog.

After you have finished entering the code, save the file by selecting the Save option in the
File menu. Save it to a file named HELLO.CPP in the new directory Visual C++ created.

Now choose the Add To Project option in the Project menu, and select Files... You will see
a dialog that lets you select the source files that you want to include in your project. You can
call up this dialog at any time to edit the project's files by selecting the Add To Project
option. In this case, the HELLO.CPP file is the only source file needed, so double click on it.

In the area on the left side of the screen, click the FileView tab and double-click the folder
icon labeled HELLO. You will see the file named HELLO.CPP. Click on the ClassView tab
and double-click on the folder icon and you will see the classes in the application. You can
remove a file from a project at any time by going to the FileView, clicking the file, and
pressing the delete button.

Finally, you must now tell the project to use the MFC library. If you omit this step the
project will not link properly, and the error messages that the linker produces will not help
one bit. Choose the Settings option in the Project menu. Make sure that the General tab is
selected in the tab at the top of the dialog that appears. In the Microsoft Foundation
Classes combo box, choose the third option: "Use MFC in a Shared DLL." Then close the
dialog.

Having created the project file and adjusted the settings, you are ready to compile the
HELLO.CPP program. In the Build menu you will find three different compile options:

1. Compile HELLO.CPP (only available if the text window for HELLO.CPP has focus)
2. Build HELLO.EXE
3. Rebuild All

The first option simply compiles the source file listed and forms the object file for it. This
option does not perform a link, so it is useful only for quickly compiling a file to check for
errors. The second option compiles all of the source files in the project that have been
modified since the last build, and then links them to form an executable. The third option
recompiles all of the source files in the project and relinks them. It is a "compile and link from
scratch" option that is useful after you change certain compiler options or move to a different
platform.

In this case, choose the Build HELLO.EXE option in the Build menu to compile and link the
code. Visual C++ will create a new subdirectory named Debug and place the executable
named HELLO.EXE in that new subdirectory. This subdirectory holds all disposable (easily
recreated) files generated by the compiler, so you can delete this directory when you run
short on disk space without fear of losing anything important.

If you see compiler errors, simply double click on the error message in the output window.
The editor will take you to that error. Compare your code against the code above and fix the
problem. If you see a mass of linker errors, it probably means that you specified the project
type incorrectly in the dialog used to create the project. You may want to simply delete your
new directory and recreate it again following the instructions given above exactly.

To execute the program, choose the Execute HELLO.EXE option in the Build menu. A
window appears with the words "hello world". The window itself has the usual decorations: a
title bar, re-size areas, minimize and maximize buttons, and so on. Inside the window is a
static label displaying the words "hello world". Note that the program is complete. You can
move the window, re-size it, minimize it, and cover and uncover it with other windows. With a
very small amount of code you have created a complete Window application. This is one of
the many advantages of using MFC. All the details are handled elsewhere.

To terminate the program, click on its system menu (the small box to the left of the title bar)
and select the Close option.

Conclusion

In this tutorial you have successfully compiled and executed your first program. You will use
these same steps for each of the programs you create in the following tutorials. You will find
that you can either create a separate directory for each project that you create, or you can
create a single project file and then add and remove different source files.

In the next tutorial, we will examine this program in detail so you may gain a more complete
understanding of its structure.

Part 2

A Simple MFC Program

In this tutorial we will examine a simple MFC program piece by piece to gain an
understanding of its structure and conceptual framework. We will start by looking at MFC
itself and then examine how MFC is used to create applications.

An Introduction to MFC

MFC is a large and extensive C++ class hierarchy that makes Windows application
development significantly easier. MFC is compatible across the entire Windows family. As
each new version of Windows comes out, MFC gets modified so that old code compiles and

works under the new system. MFC also gets extended, adding new capabilities to the
hierarchy and making it easier to create complete applications.

The advantage of using MFC and C++ - as opposed to directly accessing the Windows API
from a C program-is that MFC already contains and encapsulates all the normal "boilerplate"
code that all Windows programs written in C must contain. Programs written in MFC are
therefore much smaller than equivalent C programs. On the other hand, MFC is a fairly thin
covering over the C functions, so there is little or no performance penalty imposed by its use.
It is also easy to customize things using the standard C calls when necessary since MFC
does not modify or hide the basic structure of a Windows program.

The best part about using MFC is that it does all of the hard work for you. The hierarchy
contains thousands and thousands of lines of correct, optimized and robust Windows code.
Many of the member functions that you call invoke code that would have taken you weeks to
write yourself. In this way MFC tremendously accelerates your project development cycle.

MFC is fairly large. For example, Version 4.0 of the hierarchy contains something like 200
different classes. Fortunately, you don't need to use all of them in a typical program. In fact, it
is possible to create some fairly spectacular software using only ten or so of the different
classes available in MFC. The hierarchy is broken into several different class categories
which include (but is not limited to):

Application Architecture
Graphical Drawing and Drawing Objects
File Services
Exceptions
Structures - Lists, Arrays, Maps
Internet Services
OLE 2
Database
General Purpose

We will concentrate on visual objects in these tutorials. The list below shows the portion of
the class hierarchy that deals with application support and windows support.

CObject
CCmdTarget
CWinThread
CWinApp
CWnd
CFrameWnd
CDialog

CView
CStatic
CButton
CListBox
CComboBox
CEdit
CScrollBar

There are several things to notice in this list. First, most classes in MFC derive from a base
class called CObject. This class contains data members and member functions that are
common to most MFC classes. The second thing to notice is the simplicity of the list. The
CWinApp class is used whenever you create an application and it is used only once in any
program. The CWnd class collects all the common features found in windows, dialog boxes,
and controls. The CFrameWnd class is derived from CWnd and implements a normal
framed application window. CDialog handles the two normal flavors of dialogs: modeless
and modal respectively. CView is used to give a user access to a document through a
window. Finally, Windows supports six native control types: static text, editable text, push
buttons, scroll bars, lists, and combo boxes (an extended form of list). Once you understand
this fairly small number of pieces, you are well on your way to a complete understanding of
MFC. The other classes in the MFC hierarchy implement other features such as memory
management, document control, data base support, and so on.

To create a program in MFC, you either use its classes directly or, more commonly, you
derive new classes from the existing classes. In the derived classes you create new member
functions that allow instances of the class to behave properly in your application. You can
see this derivation process in the simple program we used in Tutorial 1, which is described in
greater detail below. Both CHelloApp and CHelloWindow are derived from existing MFC
classes.

Designing a Program

Before discussing the code itself, it is worthwhile to briefly discuss the program design
process under MFC. As an example, imagine that you want to create a program that displays
the message "Hello World" to the user. This is obviously a very simple application but it still
requires some thought.

A "hello world" application first needs to create a window on the screen that holds the words
"hello world". It then needs to get the actual "hello world" words into that window. Three
objects are required to accomplish this task:

1. An application object which initializes the application and hooks it to Windows. The
application object handles all low-level event processing.

2. A window object that acts as the main application window.
3. A static text object which will hold the static text label "hello world".

Every program that you create in MFC will contain the first two objects. The third object is
unique to this particular application. Each application will define its own set of user interface
objects that display the application's output as well as gather input from the user.

Once you have completed the user interface design and decided on the controls necessary
to implement the interface, you write the code to create the controls on the screen. You also
write the code that handles the messages generated by these controls as they are
manipulated by the user. In the case of a "hello world" application, only one user interface
control is necessary. It holds the words "hello world". More realistic applications may have
hundreds of controls arranged in the main window and dialog boxes.

It is important to note that there are actually two different ways to create user controls in a
program. The method described here uses straight C++ code to create the controls. In a
large application, however, this method becomes painful. Creating the controls for an
application containing 50 or 100 dialogs using C++ code to do it would take an eon.
Therefore, a second method uses resource files to create the controls with a graphical dialog
editor. This method is much faster and works well on most dialogs.

Understanding the Code for "hello world"

The listing below shows the code for the simple "hello world" program that you entered,
compiled and executed in Tutorial 1. Line numbers have been added to allow discussion of
the code in the sections that follow. By walking through this program line by line, you can
gain a good understanding of the way MFC is used to create simple applications.

If you have not done so already, please compile and execute the code below by following the
instructions given in Tutorial 1.

1 //hello.cpp

2 #include <afxwin.h>

3 // Declare the application class

4 class CHelloApp : public CWinApp

5 {

6 public:

7 virtual BOOL InitInstance();

8 };

9 // Create an instance of the application class

10 CHelloApp HelloApp;

11 // Declare the main window class

12 class CHelloWindow : public CFrameWnd

13 {

14 CStatic* cs;

15 public:

16 CHelloWindow();

17 };

18 // The InitInstance function is called each

19 // time the application first executes.

20 BOOL CHelloApp::InitInstance()

21 {

22 m_pMainWnd = new CHelloWindow();

23 m_pMainWnd->ShowWindow(m_nCmdShow);

24 m_pMainWnd->UpdateWindow();

25 return TRUE;

26 }

27 // The constructor for the window class

28 CHelloWindow::CHelloWindow()

29 {

30 // Create the window itself

31 Create(NULL,

32 "Hello World!",

33 WS_OVERLAPPEDWINDOW,

34 CRect(0,0,200,200));

35 // Create a static label

36 cs = new CStatic();

37 cs->Create("hello world",

38 WS_CHILD|WS_VISIBLE|SS_CENTER,

39 CRect(50,80,150,150),

40 this);

41 }

Take a moment and look through this program. Get a feeling for the "lay of the land." The
program consists of six small parts, each of which does something important.

The program first includes afxwin.h (line 2). This header file contains all the types, classes,
functions, and variables used in MFC. It also includes other header files for such things as
the Windows API libraries.

Lines 3 through 8 derive a new application class named CHelloApp from the standard
CWinApp application class declared in MFC. The new class is created so the InitInstance
member function in the CWinApp class can be overridden. InitInstance is a virtual function
that is called as the application begins execution.

In Line 10, the code declares an instance of the application object as a global variable. This
instance is important because it causes the program to execute. When the application is
loaded into memory and begins running, the creation of that global variable causes the
default constructor for the CWinApp class to execute. This constructor automatically calls
the InitInstance function defined in lines 18 though 26.

In lines 11 through 17, the CHelloWindow class is derived from the CFrameWnd class
declared in MFC. CHelloWindow acts as the application's window on the screen. A new
class is created so that a new constructor, destructor, and data member can be
implemented.

Lines 18 through 26 implement the InitInstance function. This function creates an instance
of the CHelloWindow class, thereby causing the constructor for the class in Lines 27
through 41 to execute. It also gets the new window onto the screen.

Lines 27 through 41 implement the window's constructor. The constructor actually creates
the window and then creates a static control inside it.

An interesting thing to notice in this program is that there is no main or WinMain function,
and no apparent event loop. Yet we know from executing it in Tutorial 1 that it processed

events. The window could be minimized and maximized, moved around, and so on. All this
activity is hidden in the main application class CWinApp and we therefore don't have to
worry about it-event handling is totally automatic and invisible in MFC.

The following sections describe the different pieces of this program in more detail. It is
unlikely that all of this information will make complete sense to you right now: It's best to read
through it to get your first exposure to the concepts. In Tutorial 3, where a number of specific
examples are discussed, the different pieces will come together and begin to clarify
themselves.

The Application Object

Every program that you create in MFC will contain a single application object that you derive
from the CWinApp class. This object must be declared globally (line 10) and can exist only
once in any given program.

An object derived from the CWinApp class handles initialization of the application, as well as
the main event loop for the program. The CWinApp class has several data members, and a
number of member functions. For now, almost all are unimportant. If you would like to browse
through some of these functions however, search for CWinApp in the MFC help file by
choosing the Search option in the Help menu and typing in "CWinApp". In the program
above, we have overridden only one virtual function in CWinApp, that being the InitInstance
function.

The purpose of the application object is to initialize and control your application. Because
Windows allows multiple instances of the same application to run simultaneously, MFC
breaks the initialization process into two parts and uses two functions-InitApplication and
InitInstance-to handle it. Here we have used only the InitInstance function because of the
simplicity of the application. It is called each time a new instance of the application is
invoked. The code in Lines 3 through 8 creates a class called CHelloApp derived from
CWinApp. It contains a new InitInstance function that overrides the existing function in
CWinApp (which does nothing):

3 // Declare the application class

4 class CHelloApp : public CWinApp

5 {

6 public:

7 virtual BOOL InitInstance();

8 };

Inside the overridden InitInstance function at lines 18 through 26, the program creates and
displays the window using CHelloApp's data member named m_pMainWnd:

18 // The InitInstance function is called each

19 // time the application first executes.

20 BOOL CHelloApp::InitInstance()

21 {

22 m_pMainWnd = new CHelloWindow();

23 m_pMainWnd->ShowWindow(m_nCmdShow);

24 m_pMainWnd->UpdateWindow();

25 return TRUE;

26 }

The InitInstance function returns a TRUE value to indicate that initialization completed
successfully. Had the function returned a FALSE value, the application would terminate
immediately. We will see more details of the window initialization process in the next section.

When the application object is created at line 10, its data members (inherited from
CWinApp) are automatically initialized. For example, m_pszAppName, m_lpCmdLine, and
m_nCmdShow all contain appropriate values. See the MFC help file for more information.
We'll see a use for one of these variables in a moment.

The Window Object

MFC defines two types of windows: 1) frame windows, which are fully functional windows
that can be re-sized, minimized, and so on, and 2) dialog windows, which are not re-sizable.
A frame window is typically used for the main application window of a program.

In the code shown in listing 2.1, a new class named CHelloWindow is derived from the
CFrameWnd class in lines 11 through 17:

11 // Declare the main window class

12 class CHelloWindow : public CFrameWnd

13 {

14 CStatic* cs;

15 public:

16 CHelloWindow();

17 };

The derivation contains a new constructor, along with a data member that will point to the
single user interface control used in the program. Each application that you create will have a
unique set of controls residing in the main application window. Therefore, the derived class
will have an overridden constructor that creates all the controls required in the main window.
Typically this class will also have an overridden destructor to delete them when the window
closes, but the destructor is not used here. In Tutorial 4, we will see that the derived window
class will also declare a message handler to handle messages that these controls produce in
response to user events.

Typically, any application you create will have a single main application window. The
CHelloApp application class therefore defines a data member named m_pMainWnd that
can point to this main window. To create the main window for this application, the
InitInstance function (lines 18 through 26) creates an instance of CHelloWindow and uses
m_pMainWnd to point to the new window. Our CHelloWindow object is created at line 22:

18 // The InitInstance function is called each

19 // time the application first executes.

20 BOOL CHelloApp::InitInstance()

21 {

22 m_pMainWnd = new CHelloWindow();

23 m_pMainWnd->ShowWindow(m_nCmdShow);

24 m_pMainWnd->UpdateWindow();

25 return TRUE;

26 }

Simply creating a frame window is not enough, however. Two other steps are required to
make sure that the new window appears on screen correctly. First, the code must call the
window's ShowWindow function to make the window appear on screen (line 23). Second,
the program must call the UpdateWindow function to make sure that each control, and any
drawing done in the interior of the window, is painted correctly onto the screen (line 24).

You may wonder where the ShowWindow and UpdateWindow functions are defined. For

example, if you wanted to look them up to learn more about them, you might look in the MFC
help file (use the Search option in the Help menu) at the CFrameWnd class description.
CFrameWnd does not contain either of these member functions, however. It turns out that
CFrameWnd inherits its behavior-as do all controls and windows in MFC-from the CWnd
class (see figure 2.1). If you refer to CWnd in the MFC documentation, you will find that it is a
huge class containing over 200 different functions. Obviously, you are not going to master
this particular class in a couple of minutes, but among the many useful functions are
ShowWindow and UpdateWindow.

Since we are on the subject, take a minute now to look up the CWnd::ShowWindow
function in the MFC help file. You do this by clicking the help file's Search button and
entering "ShowWindow". As an alternative, find the section describing the CWnd class using
the Search button, and then find the ShowWindow function under the Update/Painting
Functions in the class member list. Notice that ShowWindow accepts a single parameter,
and that the parameter can be set to one of ten different values. We have set it to a data
member held by CHelloApp in our program, m_nCmdShow (line 23). The m_nCmdShow
variable is initialized based on conditions set by the user at application start-up. For example,
the user may have started the application from the Program Manager and told the Program
Manager to start the application in the minimized state by setting the check box in the
application's properties dialog. The m_nCmdShow variable will be set to
SW_SHOWMINIMIZED, and the application will start in an iconic state. The m_nCmdShow
variable is a way for the outside world to communicate with the new application at start-up. If
you would like to experiment, you can try replacing m_nCmdShow in the call to
ShowWindow with the different constant values defined for ShowWindow . Recompile the
program and see what they do.

Line 22 initializes the window. It allocates memory for it by calling the new function. At this
point in the program's execution the constructor for the CHelloWindow is called. The
constructor is called whenever an instance of the class is allocated. Inside the window's
constructor, the window must create itself. It does this by calling the Create member function
for the CFrameWnd class at line 31:

27 // The constructor for the window class

28 CHelloWindow::CHelloWindow()

29 {

30 // Create the window itself

31 Create(NULL,

32 "Hello World!",

33 WS_OVERLAPPEDWINDOW,

34 CRect(0,0,200,200));

Four parameters are passed to the create function. By looking in the MFC documentation
you can see the different types. The initial NULL parameter indicates that a default class
name be used. The second parameter is the title of the window that will appear in the title
bar. The third parameter is the style attribute for the window. This example indicates that a
normal, overlappable window should be created. Style attributes are covered in detail in
Tutorial 3. The fourth parameter specifies that the window should be placed onto the screen
with its upper left corner at point 0,0, and that the initial size of the window should be 200 by
200 pixels. If the value rectDefault is used as the fourth parameter instead, Windows will
place and size the window automatically for you.

Since this is an extremely simple program, it creates a single static text control inside the
window. In this particular example, the program uses a single static text label as its only
control, and it is created at lines 35 through 40. More on this step in the next section.

The Static Text Control

The program derives the CHelloWindow class from the CFrameWnd class (lines 11 through
17). In doing so it declares a private data member of type CStatic*, as well as a constructor.

As seen in the previous section, the CHelloWindow constructor does two things. First it
creates the application's window by calling the Create function (line 31), and then it allocates
and creates the control that belongs inside the window. In this case a single static label is
used as the only control. Object creation is always a two-step process in MFC. First, the
memory for the instance of the class is allocated, thereby calling the constructor to initialize
any variables. Next, an explicit Create function is called to actually create the object on
screen. The code allocates, constructs, and creates a single static text object using this two-
step process at lines 36 through 40:

27 // The constructor for the window class

28 CHelloWindow::CHelloWindow()

29 {

30 // Create the window itself

31 Create(NULL,

32 "Hello World!",

33 WS_OVERLAPPEDWINDOW,

34 CRect(0,0,200,200));

35 // Create a static label

36 cs = new CStatic();

37 cs->Create("hello world",

38 WS_CHILD|WS_VISIBLE|SS_CENTER,

39 CRect(50,80,150,150),

40 this);

41 }

The constructor for the CStatic item is called when the memory for it is allocated, and then
an explicit Create function is called to create the CStatic control's window. The parameters
used in the Create function here are similar to those used for window creation at Line 31.
The first parameter specifies the text to be displayed by the control. The second parameter
specifies the style attributes. The style attributes are discussed in detail in the next tutorial
but here we requested that the control be a child window (and therefore displayed within
another window), that it should be visible, and that the text within the control should be
centered. The third parameter determines the size and position of the static control. The
fourth indicates the parent window for which this control is the child. Having created the static
control, it will appear in the application's window and display the text specified.

Conclusion

In looking at this code for the first time, it will be unfamiliar and therefore potentially annoying.
Don't worry about it. The only part in the entire program that matters from an application
programmer's perspective is the CStatic creation code at lines 36 through 40. The rest you
will type in once and then ignore. In the next tutorial you will come to a full understanding of
what lines 36 through 40 do, and see a number of options that you have in customizing a
CStatic control.

New and Cool in MFC 6.0
Changes to AppWizard, IE4 Controls, and a connection to DHTML make this rev worth
learning By Scot Wingo

You may already be enjoying the productivity gains from great new features in Microsoft
Visual C++ 6.0 like the IDE, editor, and compiler. Now that you’ve had a chance to recompile
your current projects with the latest rev of Visual C++, it’s time to look at what’s new in the
latest release of MFC, Version 6.0.

Fire It Up!

The fastest way to discover what’s new in MFC 6.0 is to fire up our old friend, AppWizard,
and see what’s changed since Version 5.0. Go ahead and start AppWizard by selecting
File/New/MFC AppWizard (EXE).

Figure 1:New AppWizard functionality

The first difference you’ll notice occurs in step 1. Figure 1 shows a new option:
“Document/View architecture support?” In previous versions, everything generated by
AppWizard was automatically document/view-oriented, and you had to manually remove any
document/view (and document template, etc.). Now if you’re starting a project and don’t care
for document/view support, this option automatically omits document/view references from
the generated code for you.

For this example, accept all of the defaults and go to step 4. Figure 2 shows step 4 of the
AppWizard and another new option: “How do you want your toolbars to look?” with the
“Normal” and “Internet Explorer ReBars” options. Choose Internet Explorer ReBars.

Figure 3: Project style option

At the top of Step 5, shown in Figure 3, you’ll get another new question: “What style of
project would you like?” The options are “MFC Standard” or “Windows Explorer.” Choose the

Windows Explorer option.

Finally, Step 6 includes a new but hidden feature. Can you find it? If you select a view, you’ll
notice a new CView derivative: CHtmlView. Figure 4 shows where this new option lives.

Figure 4: CHtmlView

CHtmlView is fairly sophisticated, so we’ll cover it in a separate section later. Accept the
defaults in step 6 and compile and run the application. Figure 5 shows the application in
action.

Figure 5: Working application

Notice that the application has a fancy new toolbar that “slides” and has grippers like the
toolbar in Internet Explorer 4. Also notice that a splitter has automatically been created for us
so that we can more easily create an Explorer-style application with a CTreeView in the left
pane and a CListView in the right pane.

Let’s learn more about the new ReBar control by exploring the code that AppWizard
generated (so you can convert existing applications to use the new toolbar) and customize
the default ReBar.

Anatomy of a ReBar

In addition to the “sliding” and gripper functionality, the ReBar also allows you to provide
many more internal control types—such as drop-down menus—than are available in
CToolBar. Before we explore these features let’s look at the components of a ReBar.

Figure 6: ReBar elements

Figure 6 shows the various parts of a ReBar. Each internal toolbar in a ReBar is called a
“band.” The raised edge where the user slides the band is called a gripper. Each band can
also have a label as illustrated.

MFC 6.0 provides two new classes that facilitate working with ReBars:

CReBar—a high-level abstraction class that provides members for adding CToolBar
and CDialogBar classes to ReBars as bands. CReBar also handles communication
(such as message notifications) between the underlying control and the MFC
framework.
CReBarCtrl—a low-level wrapper class that wraps the IE ReBar control. This class
provides numerous members for creating and manipulating ReBars, but doesn’t
provide the niceties found in CReBar. Most MFC applications use CReBar and call
the member function GetReBarCtrl(), which returns a CReBarCtrl pointer to gain
access to the lower-level control on an as-needed basis.

Working with CReBar

If you open the MainFrm.h header file generated earlier by AppWizard, you’ll see the code
below which declares the CReBar data member, m_ndReBar.

protected: // control bar embedded members

 CStatusBar m_wndStatusBar;

 CToolBar m_wndToolBar;

 CReBar m_wndReBar;

 CDialogBar m_wndDlgBar;

In the MainFrm.cpp file, you can see the code that adds the toolbar and dialog bar to the
CReBar:

 if (!m_wndReBar.Create(this) ||

 !m_wndReBar.AddBar(&m_wndToolBar) ||

 !m_wndReBar.AddBar(&m_wndDlgBar))

 {

 TRACE0("Failed to create rebar\n");

 return -1; // fail to create

 }

Let’s customize the “TODO: layout dialog bar” band from the application we generated
earlier with AppWizard.

First, open up the Visual C++ resource editor. Under the dialog heading you’ll find a dialog
resource (for the dialog bar) with ID IDR_MAINFRAME, which contains “TODO: layout dialog

bar.” Let’s follow AppWizard’s suggestion and put some real controls into the dialog bar.
First, delete the static control with the “TODO” text in it. Next, place a combo box in the
dialog bar and enter some default data items: “one,” “two,” “buckle,” “my,” “shoe”! Now place
a button and change the button’s text to “Increment.” Next, place a progress bar with the
default properties and place another button with the text “Decrement.” When you’re done
laying out the dialog bar it should look similar to Figure 7.

Figure 7: Adding controls to the dialog bar

Before we can program the handlers for the “Increment” and “Decrement” buttons, we need
to attach the dialog bar to a class using ClassWizard. While in the resource editor, bring up
ClassWizard by double clicking on the Increment button. Choose Select an existing class.
We choose this option because we want our dialog resource to be a band in the toolbar, not
a separate dialog class. Choose CMainFrame from the list and select OK. ClassWizard
prompts you with one last dialog. Select Yes and exit ClassWizard. You have successfully
associated the IDR_MAINFRAME dialog bar with the CMainFrame class!

Finally, let’s add some behavior to the dialog bar. Bring up the IDR_MAINFRAME dialog
resource in the resource editor and double click on the Increment button. ClassWizard
automatically creates an OnButton1() handler for you—accept the default name for this
function. Enter this code for the OnButton1() function:

void CMainFrame::OnButton1()

{

 CProgressCtrl * pProgress =

 (CProgressCtrl*)m_wndDlg Bar.GetDlgItem

 (IDC_PROGRESS1);

 pProgress->StepIt();

}

The OnButton1() handler first gets a pointer to the progress control and then calls StepIt()
to increment the progress control.

Now we need to add similar code to the decrement handler. Double click on the Decrement
button in the resource editor, and ClassWizard will automatically create an OnButton2()
handler. Add the following code to the OnButton2() member function:

void CMainFrame::OnButton2()

{

CProgressCtrl * pProgress =

 (CProgressCtrl*)m_wndDlgBar.GetDlgItem

 (IDC_PROGRESS1);

 int nCurrentPos = pProgress->GetPos();

 pProgress->SetPos(nCurrentPos-10);

}

Figure 8: Application results

Now you’re ready to compile and run the application. Figure 8 shows the results. This
example is just the tip of the ReBar functionality iceberg, but it should give you an idea of
how to get started and what it’s like to work with the new class. The Visual C++ on-line
documentation is a great place to learn more about ReBar’s capabilities.

Actually, the ReBar is one of several new controls that are part of the Internet Explorer SDK
now supported in MFC 6.0. Let’s take a look at some of the other new controls that are
supported.

IE 4 Controls

When Microsoft released Internet Explorer 4, they included a new and improved version of
the COMCTL32.DLL, which houses the Windows Common Controls. Because this update to
the common controls wasn’t part of an operating system release, Microsoft calls the update
the “Internet Explorer 4 Common Controls.” It updates all of the existing controls and adds a
variety of advanced new controls. Visual C++ 6.0 and MFC 6.0 include a great deal of
support for these new controls.

Figure 9 shows a dialog with each of the new IE4 controls. You can refer to it as you read
the descriptions of the controls that follow.

Figure 9: New IE4 controls

Date and Time Picker

Before the date and time picker was provided with the IE4 controls, to enter a date, you had
to use a third-party control, or subclass an MFC edit control to do significant data validation
to ensure the entered date was valid. Fortunately, the new date and time picker provides an
advanced control that prompts the user for a date or time while offering the developer a wide
variety of styles and options. For example, dates can be displayed in short (8/14/68) or long
(August 14, 1968) formats. A time mode lets the user enter a time using the familiar
hour:minute:second AM/PM format.

The control also lets you decide if you want the user to select the date via in-place editing, a
pop-down calendar, or a spinner. A variety of selection options are available, including single
and multi (a range of dates) selections and the ability to turn on and off the red-ink “circling”
of the current date. The control even has a mode that lets the user select “no date” by
checking a check box. In Figure 9, the first four controls on the left illustrate the variety of
configurations available with this control.

The new MFC 6.0 CDateTimeCtrl class provides the MFC interface to the IE4 date and time
picker common control. This class offers a variety of notifications that enhance the
programmability of the control. CDateTimeCtrl provides member functions for dealing with
either CTime or COleDateTime time structures.

You set the date and time in a CDateTimeCtrl using the SetTime() member function and
retrieve the date and time via the GetTime() function. You can create custom formats using
the SetFormat() member function and change a variety of other configurations using the
CDateTimeCtrl interface.

Month Calendar

The large display at the bottom left of Figure 9 is a month calendar. Like the date and time
picker, the month calendar lets the user choose a date; but the month calendar can also be
used to implement a small “Personal Information Manager (PIM)” in your applications. You
can use the month calendar to show from one to 12 months. Figure 9 uses the month
calendar to show only two months.

The month calendar supports single or multiple selection and allows you to display a variety
of different options such as numbered months and circled days. Notifications for the control
let you specify which dates are bold. It’s up to you to decide what this represents. For
example, you could use the bold feature to indicate holidays, appointments, or invalid dates.
The MFC 6.0 CMonthCalCtrl class provides the implementation of this control.

To initialize CMonthCal-Ctrl, you can call the SetToday() member function. CMonthCalCtrl
provides members that deal with both CTime and COleDateTime.

Internet Protocol Address Control

If you write an application that uses any form of Internet or TCP/IP functionality, you may
need to prompt the user for an Internet Protocol (IP) address. The IE4 Common Controls
include an IP address control as shown in the top right of Figure 9. In addition to allowing the
user to enter a four-byte IP address, this control performs automatic validation of the entered
IP address. CIPAddressCtrl provides MFC support for the IP address control.

Figure 10: IP address

An IP address consists of four “fields” as shown in Figure 10. The fields are numbered from
left to right. To initialize an IP address control, call the SetAddress() member function in
your OnInitDialog() function. SetAddress() takes a DWORD, with each byte in the DWORD
representing one of the fields. In your message handlers, you can call the GetAddress()
member function to retrieve a DWORD or a series of bytes to retrieve the various values of
the four IP address fields.

Extended Combo Box

The “old fashioned” combo box was developed in the early days of Windows, and its age
and inflexible design have been the source of a great deal of developer confusion. With the
IE4 controls, Microsoft released a much more flexible version of the combo box, called the
“extended combo box.”

The extended combo box gives you much simpler access and control over the edit control
portion of the combo box. In addition, the extended combo box lets you attach an image list
to the items in the combo box so you can easily display graphics in it. (Remember the old
days when you had to use owner-drawn combo boxes?) Each item in the extended combo
box can be associated with a selected image, an unselected image, and an overlay image.
These three images can be used to provide a variety of graphical displays in the combo box.
The bottom two combo boxes in Figure 9 are both extended combo boxes. The MFC
CComboBoxEx class provides comprehensive extended combo box support.

CComboBoxEx can be attached to a CImageList that will automatically display graphics next
to the text in the extended combo box. If you’re already familiar with CComboBox,
CComboBoxEx may cause some confusion; instead of containing strings, the extended
combo box contains items of type COMBOBOXEXITEM. COMBOBOXEXITEM is a structure
that consists of the following fields:

UINT mask—A set of bit flags that specify which operations are to be performed using
the structure. For example, set the CBEIF_IMAGE flag if the iImage field is to be set
or retrieved in an operation.
int iItem—Extended combo box item number. Like the older style combo box, the
extended combo box uses zero-based indexing.
LPTSTR pszText—Text of the item.
int cchTextMax—Length of the buffer available in pszText.
int iImage—Zero-based index into an associated image list.
int iSelectedImage—Index of the image in the image list to be used to represent the
“selected” state.
int iOverlay—Index of the image in the image list to be used to overlay the current
image.
int iIndent—Number of 10-pixel indentation spaces.
LPARAM lParam—32-bit parameter for the item.

See Bill Wagner’s article, “Build a Browser in an Afternoon Using Microsoft’s Web Browser”
at www.vcdj.com/vcdj/jul98 /browser1.asp for more more information.

The last and perhaps biggest new feature in MFC 6.0 is support for Dynamic HTML in the
CHTMLView class.

DHTML Support

Dynamic HTML (DHTML) is a new and exciting feature introduced as part of IE4. It provides
serious benefits that could ultimately change the way we think about developing Windows
applications. What’s the buzz about?

It all starts with the IE “HTML display engine,” sometimes called “Trident” in Microsoft
literature. As part of the design of IE4, Microsoft made Trident its own COM component,
exposing many of its internal objects used for displaying HTML pages in IE. This feature
allows you to traverse the portions of an HTML page in script or code as if the HTML page
was a data structure. Gone are the days of having to parse HTML or write grotesque CGI
scripts to get to data in a form. The real power in DHTML doesn’t lie in the ability to access
the HTML objects, but to actually change and manipulate the HTML page on-the-fly—thus,
the name Dynamic HTML.

Once you understand the concept of DHTML, a million possible applications come to mind.
For the Webmaster, this means that much of the logic that manipulates a page can live in
scripts that are downloaded to the client. For the C++ developer, it means you can embed
DHTML in your applications and use it as an embedded Web client or as a super-flexible,
dynamic “form” that your application can change on-the-fly. For an example of how to
leverage Web views in your applications, try some of the new Internet-enabled applications
like Quicken 99 or Microsoft Money 99.

http://www.vcdj.com/vcdj/jul98/browser1.asp

DHTML is so powerful and extensive that it would take a separate book (like Inside Dynamic
HTML by Scott Isaacs) to fill you in on all of the copious details. For example, to really
leverage DHTML, you need to understand the many possible elements of an HTML page,
such as forms, lists, and stylesheets. Instead of covering all of the aspects of DHTML, I’ll
briefly introduce you to the DHTML object model and show you how to work with it using
MFC. This is all made possible by the excellent DHTML support introduced in Visual C++
6.0.

The DHTML Object Model

If you’ve been heads-down on a Visual C++ project and haven’t had time to peek at HTML,
it’s an ASCII mark-up language format. Here’s a very basic look at a simplistic HTML page:

<html>

<head>

<title>

This is an example of a very basic HTML page!

</title>

</head>

<body>

<h1>This is some text with H1!

</h1>

<h3>

This is some text with H3!

</h3>

</body>

</html>

This basic HTML “document” is composed of several “elements.” The head (or header)
contains the title: “This is an example of a very basic HTML page!” Next, the body of the
document contains two elements. The first element has a style of heading 1 (h1) and reads:

“This is some text with H1!” The last element includes text with style heading 3 (h3) that
reads: “This is some text with H3!”

Figure 11: DHTML object model hierarchy
Graphic from Inside Dynamic HTML by Scott Isaacs. Reproduced by permission of Microsoft
Press. All rights reserved.

When IE loads this HTML page, it creates an internal representation that you can traverse,
read, and manipulate through the DHTML object model. Figure 11 shows the basic hierarchy
of the DHTML object model.

At the root of the object model is the window object. This object can be used from a script to
do something like pop-up a dialog box. Here’s an example of some script that accesses the
window object:

<SCRIPT LANGUAGE="JavaScript">

function about()

{

window.showModalDialog("about.htm","",

 "dialogWidth:25em;dialogHeight13em")

}

</SCRIPT>

When the about script is called, it in turn calls the showModalDialog() function in the window
DHTML object to display a dialog. This example also illustrates how scripts access the object
model—through globally accessible objects that map directly to the corresponding object in
the DHTML object model.

The window object has several “sub” objects that further allow you to manipulate portions of
IE4. The document object is what you’ll spend most of your time on when writing DHTML
code, because it gives you programmatic access to the various elements of the HTML
document currently loaded. The following script shows how to create basic dynamic content
that changes the document object:

<HTML>

<HEAD>

<TITLE>Welcome!</TITLE>

<SCRIPT LANGUAGE="JScript">

function changeMe() {

 document.all.MyHeading.outerHTML = "<H1

 ID=MyHeading>Dynamic HTML is magic!</H1>";

 document.all.MyHeading.style.color = "green";

 document.all.MyText.innerText = "Presto Change-o! ";

 document.all.MyText.align = "center";

 document.body.insertAdjacentHTML("BeforeEnd",

 "<P ALIGN=\"center\">Open Sesame!</P>");

}

</SCRIPT>

<BODY onclick="changeMe()">

<H3 ID=MyHeading> Dynamic HTML demo!</H3>

<P ID=MyText>Click anywhere to see the power of DHTML!</P>

</BODY>

</HTML>

This script changes the MyHeading and MyText objects in the HTML documents on-the-fly.
Not only does it change the text, but it also changes attributes of the elements such as the
color and alignment. This script is included with this article on www.vcdj.com.

Before we further decompose the DHTML object model, you need to understand the DHTML
concept of a “collection.” Collections in DHTML are logically equivalent to C++ data
structures such as linked lists. In fact, access to the DHTML object model is largely
performed by iterating through collections searching for a particular HTML element and then
potentially iterating through another sub-collection to get to yet another element. Elements
contain several methods such as “contains” and “length,” which you use to traverse through
the elements.

For example, one of the sub-elements of the document object is a collection called “all” that
contains all of the document’s elements. In fact, most of the sub-objects of the document

object are collections. The following script shows how to iterate through the “all” collection
and lists the various items of a document.

<HTML>

<HEAD><TITLE>Iterating through the all collection.</TITLE>

<SCRIPT LANGUAGE="JScript">

function listAllElements() {

 var tag_names = "";

 for (i=0; i<document.all.length; i++)

 tag_names = tag_names +

 document.all(i).tagName + " ";

 alert("This document contains: " + tag_names);

}

</SCRIPT>

</HEAD>

<BODY onload="listAllElements()">

<H1>DHTML Rocks!</H1>

<P>This document is very short.

</BODY>

</HTML>

Notice how easy it is to retrieve items with script (using parentheses similar to how we
access an array in C++)? Also notice that each element in an HTML document has
properties such as “tagName” that allow you to search programmatically for various
elements. For example, if you wanted to write a script that filtered out all bold items, you
would scan the all collection for an element with tagName “B.”

Now that we’ve covered the basics of the DHTML object model and how to access them
through scripts from the Web master’s perspective, let’s look at how MFC 6.0 lets us work
with DHTML from an application developer’s perspective.

MFC 6.0 and the DHTML Connection

MFC 6.0’s CHTMLView gives you complete access to the DHTML object model. However,

access to the object model from languages like C++ is done through OLE Automation
(IDispatch) and in many cases isn’t as cut-and-dried as some of the scripts we looked at
earlier. The DHTML object model gets exposed through a set of COM objects with the prefix
“IHTML” (as in IHTMLDoc-ument, IHTMLWindow, IHTMLElement, and IHTMLBody-
Element). In C++, once you’ve obtained the document interface, you can use any of the
IHTMLDocument2 interfaces to obtain or modify the document’s properties.

You can access the all collection by calling the IHTMLDoc-ument2::get_all() method. This
method returns an IHTML-ElementCollection collection interface that contains all the
elements in the document. You can then iterate through the collection using the
IHTMLElementCollection::item() method (similar to the parentheses in the scripts above).
The IHTMLElementCollection::item() method supplies you with an IDispatch pointer on
which you can call QueryInterface, requesting the IID_IHTMLElement interface. This gives
you an IHTMLElement interface pointer to get or set information for the HTML element.

Most elements also provide a specific interface for working with that element type. These
element-specific interface names take the format of IHTMLXXXXElement, where XXXX is
the name of the element (as in IHTMLBodyElement). You must call QueryInterface on the
IHTMLElement object to request the element-specific interface you need. If this sounds
confusing, it can be! But don’t worry, we’ll go through an example of how to use DHTML with
MFC.

Where the Connection Begins

MFC’s support for DHTML starts with a new CView derivative, CHtmlView, allowing you to
embed an HTML view inside of frame windows or splitter windows. With some DHTML work,
CHtmlView can act as a dynamic form. Let’s use it to generate a simple application and add
some DHTML manipulation code.

First, create a simple MDI application with a CHtmlView as the view. In Visual C++, select
File/New/Projects and choose MFC AppWizard (EXE). Accept all the defaults up to step 6. In
step 6 choose CHtmlView as the base class.

If you look in your ProjectNameView.cpp file, you’ll see this line in the
CProjectNameView::OnInitialUpdate() function:

 Navigate2(_T("http://www.microsoft.com/visualc/"),NULL,NULL);

Figure 12: Sample application

You can edit this line to have the application load a different URL from the Visual C++ page,
or a local page. Compile and run this application to see the basic CHtmlView in action.

Figure 12 shows the application running.

You can obtain on www.vcdj.com a more comprehensive DHTML sample that creates a
CHtmlView and a CListView separated by a splitter. It then uses DHTML to enumerate the
HTML elements in the CHtmlView and displays the results in the CListView. The end result
is a DHTML explorer that you can use to view the DHTML object model of any HTML file!
The sample includes a README.TXT file that describes the steps used to generate the
application. Figure 13 shows the MFC 6.0 sample in action.

Figure 13: MFC 6.0 sample

For more information

I hope this introduction to DHTML has started you thinking about some ways you can use
this exciting new technology in your MFC-based applications. The possibilities are endless:
applications that update from the Internet, completely dynamic applications, and countless
others.

PART 1 2 3

Introduction to MFC Programming with Visual
C++ v5.x
by Marshall Brain

A Simple MFC Program

In this tutorial we will examine a simple MFC program piece by piece to gain
an understanding of its structure and conceptual framework. We will start by
looking at MFC itself and then examine how MFC is used to create
applications.

An Introduction to MFC

MFC is a large and extensive C++ class hierarchy that makes Windows
application development significantly easier. MFC is compatible across the
entire Windows family. As each new version of Windows comes out, MFC gets
modified so that old code compiles and works under the new system. MFC
also gets extended, adding new capabilities to the hierarchy and making it
easier to create complete applications.

The advantage of using MFC and C++ - as opposed to directly accessing the
Windows API from a C program-is that MFC already contains and
encapsulates all the normal "boilerplate" code that all Windows programs
written in C must contain. Programs written in MFC are therefore much
smaller than equivalent C programs. On the other hand, MFC is a fairly thin
covering over the C functions, so there is little or no performance penalty
imposed by its use. It is also easy to customize things using the standard C
calls when necessary since MFC does not modify or hide the basic structure of
a Windows program.

The best part about using MFC is that it does all of the hard work for you. The
hierarchy contains thousands and thousands of lines of correct, optimized and
robust Windows code. Many of the member functions that you call invoke

code that would have taken you weeks to write yourself. In this way MFC
tremendously accelerates your project development cycle.

MFC is fairly large. For example, Version 4.0 of the hierarchy contains
something like 200 different classes. Fortunately, you don't need to use all of
them in a typical program. In fact, it is possible to create some fairly
spectacular software using only ten or so of the different classes available in
MFC. The hierarchy is broken into several different class categories which
include (but is not limited to):

Application Architecture
Graphical Drawing and Drawing Objects
File Services
Exceptions
Structures - Lists, Arrays, Maps
Internet Services
OLE 2
Database
General Purpose

Visualizing MFC
One of the most
frusterating things when
you are first learning MFC
is the "Where am I?"
feeling you get. MFC has
hundreds of classes. A
good way to get around
this feeling is to use a
class hierarchy
visualization tool like
CodeVizor. With CodeVizor
you can drag the source
code for MFC into the
CodeVizor tool and in
about 30 seconds have a
beautiful, clickable (and
printable!) class hierarchy
chart. Get CodeVizor and
see how much easier
undestanding MFC
becomes!

We will concentrate on visual objects in these tutorials.
The list below shows the portion of the class hierarchy
that deals with application support and windows
support.

CObject
CCmdTarget
CWinThread
CWinApp
CWnd
CFrameWnd
CDialog
CView
CStatic
CButton
CListBox
CComboBox
CEdit
CScrollBar

There are several things to notice in this list. First, most classes in MFC derive

http://codevizor.iftech.com/rd/r_dcsb2cv.asp

from a base class called CObject. This class contains data members and
member functions that are common to most MFC classes. The second thing to
notice is the simplicity of the list. The CWinApp class is used whenever you
create an application and it is used only once in any program. The CWnd
class collects all the common features found in windows, dialog boxes, and
controls. The CFrameWnd class is derived from CWnd and implements a
normal framed application window. CDialog handles the two normal flavors
of dialogs: modeless and modal respectively. CView is used to give a user
access to a document through a window. Finally, Windows supports six native
control types: static text, editable text, push buttons, scroll bars, lists, and
combo boxes (an extended form of list). Once you understand this fairly
small number of pieces, you are well on your way to a complete
understanding of MFC. The other classes in the MFC hierarchy implement
other features such as memory management, document control, data base
support, and so on.

To create a program in MFC, you either use its classes directly or, more
commonly, you derive new classes from the existing classes. In the derived
classes you create new member functions that allow instances of the class to
behave properly in your application. You can see this derivation process in
the simple program we used in Tutorial 1, which is described in greater detail
below. Both CHelloApp and CHelloWindow are derived from existing MFC
classes.

Designing a Program

Before discussing the code itself, it is worthwhile to briefly discuss the
program design process under MFC. As an example, imagine that you want to
create a program that displays the message "Hello World" to the user. This is
obviously a very simple application but it still requires some thought.

A "hello world" application first needs to create a window on the screen that
holds the words "hello world". It then needs to get the actual "hello world"
words into that window. Three objects are required to accomplish this task:

1. An application object which initializes the application and hooks it to
Windows. The application object handles all low-level event processing.

2. A window object that acts as the main application window.
3. A static text object which will hold the static text label "hello world".

Every program that you create in MFC will contain the first two objects. The
third object is unique to this particular application. Each application will define
its own set of user interface objects that display the application's output as
well as gather input from the user.

Once you have completed the user interface design and decided on the
controls necessary to implement the interface, you write the code to create
the controls on the screen. You also write the code that handles the
messages generated by these controls as they are manipulated by the user.
In the case of a "hello world" application, only one user interface control is
necessary. It holds the words "hello world". More realistic applications may
have hundreds of controls arranged in the main window and dialog boxes.

It is important to note that there are actually two different ways to create
user controls in a program. The method described here uses straight C++
code to create the controls. In a large application, however, this method
becomes painful. Creating the controls for an application containing 50 or 100
dialogs using C++ code to do it would take an eon. Therefore, a second
method uses resource files to create the controls with a graphical dialog
editor. This method is much faster and works well on most dialogs.

Understanding the Code for "hello world"

The listing below shows the code for the simple "hello world" program that
you entered, compiled and executed in Tutorial 1. Line numbers have been
added to allow discussion of the code in the sections that follow. By walking
through this program line by line, you can gain a good understanding of the
way MFC is used to create simple applications.

If you have not done so already, please compile and execute the code below
by following the instructions given in Tutorial 1.

1 //hello.cpp 2 #include <afxwin.h> 3 // Declare the application class 4 class CHelloApp :
public CWinApp 5 { 6 public: 7 virtual BOOL InitInstance(); 8 }; 9 // Create an instance of
the application class 10 CHelloApp HelloApp; 11 // Declare the main window class 12 class
CHelloWindow : public CFrameWnd 13 { 14 CStatic* cs; 15 public: 16 CHelloWindow(); 17
}; 18 // The InitInstance function is called each 19 // time the application first executes.
20 BOOL CHelloApp::InitInstance() 21 { 22 m_pMainWnd = new CHelloWindow(); 23
m_pMainWnd->ShowWindow(m_nCmdShow); 24 m_pMainWnd->UpdateWindow(); 25
return TRUE; 26 } 27 // The constructor for the window class 28
CHelloWindow::CHelloWindow() 29 { 30 // Create the window itself 31 Create(NULL, 32
"Hello World!", 33 WS_OVERLAPPEDWINDOW, 34 CRect(0,0,200,200)); 35 // Create a
static label 36 cs = new CStatic(); 37 cs->Create("hello world", 38
WS_CHILD|WS_VISIBLE|SS_CENTER, 39 CRect(50,80,150,150), 40 this); 41 }

Take a moment and look through this program. Get a feeling for the "lay of
the land." The program consists of six small parts, each of which does
something important.

The program first includes afxwin.h (line 2). This header file contains all the
types, classes, functions, and variables used in MFC. It also includes other
header files for such things as the Windows API libraries.

Lines 3 through 8 derive a new application class named CHelloApp from the
standard CWinApp application class declared in MFC. The new class is
created so the InitInstance member function in the CWinApp class can be
overridden. InitInstance is a virtual function that is called as the application
begins execution.

In Line 10, the code declares an instance of the application object as a global
variable. This instance is important because it causes the program to
execute. When the application is loaded into memory and begins running, the
creation of that global variable causes the default constructor for the
CWinApp class to execute. This constructor automatically calls the
InitInstance function defined in lines 18 though 26.

In lines 11 through 17, the CHelloWindow class is derived from the
CFrameWnd class declared in MFC. CHelloWindow acts as the application's
window on the screen. A new class is created so that a new constructor,
destructor, and data member can be implemented.

Lines 18 through 26 implement the InitInstance function. This function
creates an instance of the CHelloWindow class, thereby causing the
constructor for the class in Lines 27 through 41 to execute. It also gets the
new window onto the screen.

Lines 27 through 41 implement the window's constructor. The constructor
actually creates the window and then creates a static control inside it.

An interesting thing to notice in this program is that there is no main or
WinMain function, and no apparent event loop. Yet we know from executing
it in Tutorial 1 that it processed events. The window could be minimized and
maximized, moved around, and so on. All this activity is hidden in the main
application class CWinApp and we therefore don't have to worry about it-
event handling is totally automatic and invisible in MFC.

The following sections describe the different pieces of this program in more
detail. It is unlikely that all of this information will make complete sense to
you right now: It's best to read through it to get your first exposure to the
concepts. In Tutorial 3, where a number of specific examples are discussed,
the different pieces will come together and begin to clarify themselves.

The Application Object

Every program that you create in MFC will contain a single application object
that you derive from the CWinApp class. This object must be declared
globally (line 10) and can exist only once in any given program.

An object derived from the CWinApp class handles initialization of the
application, as well as the main event loop for the program. The CWinApp
class has several data members, and a number of member functions. For
now, almost all are unimportant. If you would like to browse through some of
these functions however, search for CWinApp in the MFC help file by
choosing the Search option in the Help menu and typing in "CWinApp". In
the program above, we have overridden only one virtual function in
CWinApp, that being the InitInstance function.

The purpose of the application object is to initialize and control your
application. Because Windows allows multiple instances of the same
application to run simultaneously, MFC breaks the initialization process into
two parts and uses two functions-InitApplication and InitInstance-to
handle it. Here we have used only the InitInstance function because of the
simplicity of the application. It is called each time a new instance of the
application is invoked. The code in Lines 3 through 8 creates a class called
CHelloApp derived from CWinApp. It contains a new InitInstance function
that overrides the existing function in CWinApp (which does nothing):

3 // Declare the application class 4 class CHelloApp : public CWinApp 5 { 6 public: 7
virtual BOOL InitInstance(); 8 };

Inside the overridden InitInstance function at lines 18 through 26, the
program creates and displays the window using CHelloApp's data member
named m_pMainWnd:

18 // The InitInstance function is called each 19 // time the application first executes. 20
BOOL CHelloApp::InitInstance() 21 { 22 m_pMainWnd = new CHelloWindow(); 23
m_pMainWnd->ShowWindow(m_nCmdShow); 24 m_pMainWnd->UpdateWindow(); 25
return TRUE; 26 }

The InitInstance function returns a TRUE value to indicate that initialization
completed successfully. Had the function returned a FALSE value, the
application would terminate immediately. We will see more details of the
window initialization process in the next section.

When the application object is created at line 10, its data members (inherited
from CWinApp) are automatically initialized. For example,
m_pszAppName, m_lpCmdLine, and m_nCmdShow all contain
appropriate values. See the MFC help file for more information. We'll see a
use for one of these variables in a moment.

The Window Object

MFC defines two types of windows: 1) frame windows, which are fully
functional windows that can be re-sized, minimized, and so on, and 2) dialog
windows, which are not re-sizable. A frame window is typically used for the
main application window of a program.

In the code shown in listing 2.1, a new class named CHelloWindow is
derived from the CFrameWnd class in lines 11 through 17:

11 // Declare the main window class 12 class CHelloWindow : public CFrameWnd 13 { 14
CStatic* cs; 15 public: 16 CHelloWindow(); 17 };

The derivation contains a new constructor, along with a data member that
will point to the single user interface control used in the program. Each
application that you create will have a unique set of controls residing in the
main application window. Therefore, the derived class will have an overridden
constructor that creates all the controls required in the main window.
Typically this class will also have an overridden destructor to delete them
when the window closes, but the destructor is not used here. In Tutorial 4,
we will see that the derived window class will also declare a message handler
to handle messages that these controls produce in response to user events.

Typically, any application you create will have a single main application
window. The CHelloApp application class therefore defines a data member
named m_pMainWnd that can point to this main window. To create the
main window for this application, the InitInstance function (lines 18 through
26) creates an instance of CHelloWindow and uses m_pMainWnd to point
to the new window. Our CHelloWindow object is created at line 22:

18 // The InitInstance function is called each 19 // time the application first executes. 20
BOOL CHelloApp::InitInstance() 21 { 22 m_pMainWnd = new CHelloWindow(); 23
m_pMainWnd->ShowWindow(m_nCmdShow); 24 m_pMainWnd->UpdateWindow(); 25
return TRUE; 26 }

Simply creating a frame window is not enough, however. Two other steps are
required to make sure that the new window appears on screen correctly.
First, the code must call the window's ShowWindow function to make the
window appear on screen (line 23). Second, the program must call the
UpdateWindow function to make sure that each control, and any drawing
done in the interior of the window, is painted correctly onto the screen (line
24).

You may wonder where the ShowWindow and UpdateWindow functions
are defined. For example, if you wanted to look them up to learn more about
them, you might look in the MFC help file (use the Search option in the Help
menu) at the CFrameWnd class description. CFrameWnd does not contain
either of these member functions, however. It turns out that CFrameWnd

inherits its behavior-as do all controls and windows in MFC-from the CWnd
class (see figure 2.1). If you refer to CWnd in the MFC documentation, you
will find that it is a huge class containing over 200 different functions.
Obviously, you are not going to master this particular class in a couple of
minutes, but among the many useful functions are ShowWindow and
UpdateWindow.

Since we are on the subject, take a minute now to look up the
CWnd::ShowWindow function in the MFC help file. You do this by clicking
the help file's Search button and entering "ShowWindow". As an alternative,
find the section describing the CWnd class using the Search button, and
then find the ShowWindow function under the Update/Painting Functions in
the class member list. Notice that ShowWindow accepts a single parameter,
and that the parameter can be set to one of ten different values. We have set
it to a data member held by CHelloApp in our program, m_nCmdShow
(line 23). The m_nCmdShow variable is initialized based on conditions set
by the user at application start-up. For example, the user may have started
the application from the Program Manager and told the Program Manager to
start the application in the minimized state by setting the check box in the
application's properties dialog. The m_nCmdShow variable will be set to
SW_SHOWMINIMIZED, and the application will start in an iconic state. The
m_nCmdShow variable is a way for the outside world to communicate with
the new application at start-up. If you would like to experiment, you can try
replacing m_nCmdShow in the call to ShowWindow with the different
constant values defined for ShowWindow . Recompile the program and see
what they do.

Line 22 initializes the window. It allocates memory for it by calling the new
function. At this point in the program's execution the constructor for the
CHelloWindow is called. The constructor is called whenever an instance of
the class is allocated. Inside the window's constructor, the window must
create itself. It does this by calling the Create member function for the
CFrameWnd class at line 31:

27 // The constructor for the window class 28 CHelloWindow::CHelloWindow() 29 { 30 //
Create the window itself 31 Create(NULL, 32 "Hello World!", 33
WS_OVERLAPPEDWINDOW, 34 CRect(0,0,200,200));

Four parameters are passed to the create function. By looking in the MFC
documentation you can see the different types. The initial NULL parameter
indicates that a default class name be used. The second parameter is the title
of the window that will appear in the title bar. The third parameter is the
style attribute for the window. This example indicates that a normal,
overlappable window should be created. Style attributes are covered in detail
in Tutorial 3. The fourth parameter specifies that the window should be
placed onto the screen with its upper left corner at point 0,0, and that the

initial size of the window should be 200 by 200 pixels. If the value
rectDefault is used as the fourth parameter instead, Windows will place and
size the window automatically for you.

Since this is an extremely simple program, it creates a single static text
control inside the window. In this particular example, the program uses a
single static text label as its only control, and it is created at lines 35 through
40. More on this step in the next section.

The Static Text Control

The program derives the CHelloWindow class from the CFrameWnd class
(lines 11 through 17). In doing so it declares a private data member of type
CStatic*, as well as a constructor.

As seen in the previous section, the CHelloWindow constructor does two
things. First it creates the application's window by calling the Create function
(line 31), and then it allocates and creates the control that belongs inside the
window. In this case a single static label is used as the only control. Object
creation is always a two-step process in MFC. First, the memory for the
instance of the class is allocated, thereby calling the constructor to initialize
any variables. Next, an explicit Create function is called to actually create the
object on screen. The code allocates, constructs, and creates a single static
text object using this two-step process at lines 36 through 40:

27 // The constructor for the window class 28 CHelloWindow::CHelloWindow() 29 { 30 //
Create the window itself 31 Create(NULL, 32 "Hello World!", 33
WS_OVERLAPPEDWINDOW, 34 CRect(0,0,200,200)); 35 // Create a static label 36 cs =
new CStatic(); 37 cs->Create("hello world", 38 WS_CHILD|WS_VISIBLE|SS_CENTER, 39
CRect(50,80,150,150), 40 this); 41 }

The constructor for the CStatic item is called when the memory for it is
allocated, and then an explicit Create function is called to create the CStatic
control's window. The parameters used in the Create function here are
similar to those used for window creation at Line 31. The first parameter
specifies the text to be displayed by the control. The second parameter
specifies the style attributes. The style attributes are discussed in detail in
the next tutorial but here we requested that the control be a child window
(and therefore displayed within another window), that it should be visible,
and that the text within the control should be centered. The third parameter
determines the size and position of the static control. The fourth indicates the
parent window for which this control is the child. Having created the static
control, it will appear in the application's window and display the text
specified.

Conclusion

In looking at this code for the first time, it will be unfamiliar and therefore
potentially annoying. Don't worry about it. The only part in the entire
program that matters from an application programmer's perspective is the
CStatic creation code at lines 36 through 40. The rest you will type in once
and then ignore. In the next tutorial you will come to a full understanding of
what lines 36 through 40 do, and see a number of options that you have in
customizing a CStatic control.

PART 1 2 3

Introduction to MFC Programming with Visual
C++ v5.x
by Marshall Brain

MFC Styles

Controls are the user interface objects used to create interfaces for Windows
applications. Most Windows applications and dialog boxes that you see are
nothing but a collection of controls arranged in a way that appropriately
implements the functionality of the program. In order to build effective
applications, you must completely understand how to use the controls
available in Windows. There are only six basic controls-CStatic, CButton ,
CEdit, CList, CComboBox, and CScrollBar -along with some minor
variations (also note that Windows 95 added a collection of about 15
enhanced controls as well). You need to understand what each control can
do, how you can tune its appearance and behavior, and how to make the
controls respond appropriately to user events. By combining this knowledge
with an understanding of menus and dialogs you gain the ability to create any
Windows application that you can imagine. You can create controls either
programatically as shown in this tutorial, or through resource files using the
dialog resource editor. While the dialog editor is much more convenient, it is
extremely useful to have a general understanding of controls that you gain by
working with them programatically as shown here and in the next tutorial.

The simplest of the controls, CStatic, displays static text. The CStatic class
has no data members and only a few member functions: the constructor, the
Create function for getting and setting icons on static controls, and several
others. It does not respond to user events. Because of its simplicity, it is a
good place to start learning about Windows controls.

In this tutorial we will look at the CStatic class to understand how controls
can be modified and customized. In the following tutorial, we examine the
CButton and CScrollBar classes to gain an understanding of event handling.
Once you understand all of the controls and classes, you are ready to build
complete applications.

The Basics

A CStatic class in MFC displays static text messages to the user. These
messages can serve purely informational purposes (for example, text in a
message dialog that describes an error), or they can serve as small labels
that identify other controls. Pull open a File Open dialog in any Windows
application and you will find six text labels. Five of the labels identify the lists,
text area, and check box and do not ever change. The sixth displays the
current directory and changes each time the current directory changes.

CStatic objects have several other display formats. By changing the style of
a label it can display itself as a solid rectangle, as a border, or as an icon. The
rectangular solid and frame forms of the CStatic class allow you to visually
group related interface elements and to add separators between controls.

A CStatic control is always a child window to some parent window. Typically,
the parent window is a main window for an application or a dialog box. You
create the static control, as discussed in Tutorial 2, with two lines of code:

CStatic *cs; ... cs = new CStatic(); cs->Create("hello world",
WS_CHILD|WS_VISIBLE|SS_CENTER, CRect(50,80, 150, 150), this);

This two-line creation style is typical of all controls created using MFC. The
call to new allocates memory for an instance of the CStatic class and, in the
process, calls the constructor for the class. The constructor performs any
initialization needed by the class. The Create function creates the control at
the Windows level and puts it on the screen.

The Create function accepts up to five parameters, as described in the MFC
help file. Choose the Search option in the Help menu of Visual C++ and
then enter Create so that you can select CStatic::Create from the list.
Alternatively, enter CStatic in the search dialog and then click the Members
button on its overview page.

Most of these values are self-explanatory. The lpszText parameter specifies
the text displayed by the label. The rect parameter controls the position,
size, and shape of the text when it's displayed in its parent window. The
upper left corner of the text is determined by the upper left corner of the
rect parameter and its bounding rectangle is determined by the width and

height of the rect parameter. The pParentWnd parameter indicates the
parent of the CStatic control. The control will appear in the parent window,
and the position of the control will be relative to the upper left corner of the
client area of the parent. The nID parameter is an integer value used as a
control ID by certain functions in the API. We'll see examples of this
parameter in the next tutorial.

The dwStyle parameter is the most important parameter. It controls the
appearance and behavior of the control. The following sections describe this
parameter in detail.

CStatic Styles

All controls have a variety of display styles. Styles are determined at creation
using the dwStyle parameter passed to the Create function. The style
parameter is a bit mask that you build by or-ing together different mask
constants. The constants available to a CStatic control can be found in the
MFC help file (Find the page for the CStatic::Create function as described in
the previous section, and click on the Static Control Styles link near the top
of the page) and are also briefly described below:

Valid styles for the CStatic class -

Styles inherited from CWnd:

WS_CHILD Mandatory for CStatic.
WS_VISIBLE The control should be visible to the user.
WS_DISABLED The control should reject user events.
WS_BORDER The control's text is framed by a border.

Styles native to CStatic:

SS_BLACKFRAME The control displays itself as a rectangular border.
Color is the same as window frames.
SS_BLACKRECT The control displays itself as a filled rectangle. Color is
the same as window frames.
SS_CENTER The text is center justified.
SS_GRAYFRAME The control displays itself as a rectangular border.
Color is the same as the desktop.
SS_GRAYRECT The control displays itself as a filled rectangle. Color is
the same as the desktop.
SS_ICON The control displays itself as an icon. The text string is used
as the name of the icon in a resource file. The rect parameter controls
only positioning.

SS_LEFT The text displayed is left justified. Extra text is word-wrapped.
SS_LEFTNOWORDWRAP The text is left justified, but extra text is
clipped.
SS_NOPREFIX "&" characters in the text string indicate accelerator
prefixes unless this attribute is used.
SS_RIGHT The text displayed is right justified. Extra text is word-
wrapped.
SS_SIMPLE A single line of text is displayed left justified. Any
CTLCOLOR messages must be ignored by the parent.
SS_USERITEM User-defined item.
SS_WHITEFRAME The control displays itself as a rectangular border.
Color is the same as window backgrounds.
SS_WHITERECT The control displays itself as a filled rectangle. Color is
the same as window backgrounds.

These constants come from two different sources. The "SS" (Static Style)
constants apply only to CStatic controls. The "WS" (Window Style) constants
apply to all windows and are therefore defined in the CWnd object from
which CStatic inherits its behavior. There are many other "WS" style
constants defined in CWnd. They can be found by looking up the
CWnd::Create function in the MFC documentation. The four above are the
only ones that apply to a CStaticobject.

A CStatic object will always have at least two style constants or-ed together:
WS_CHILD and WS_VISIBLE. The control is not created unless it is the child
of another window, and it will be invisible unless WS_VISIBLE is specified.
WS_DISABLED controls the label's response to events and, since a label has
no sensitivity to events such as keystrokes or mouse clicks anyway,
specifically disabling it is redundant.

All the other style attributes are optional and control the appearance of the
label. By modifying the style attributes passed to the CStatic::Create
function, you control how the static object appears on screen. You can learn
quite a bit about the different styles by using style attributes to modify the
text appearance of the CStatic object, as discussed in the next section.

CStatic Text Appearance

The code shown below is useful for understanding the behavior of the
CStatic object. It is similar to the listing discussed in Tutorial 2, but it
modifies the creation of the CStatic object slightly. Please turn to Tutorial 1
for instructions on entering and compiling this code.

//static1.cpp #include <afxwin.h> // Declare the application class class CTestApp : public
CWinApp { public: virtual BOOL InitInstance(); }; // Create an instance of the application

class CTestApp TestApp; // Declare the main window class class CTestWindow : public
CFrameWnd { CStatic* cs; public: CTestWindow(); }; // The InitInstance function is called
// once when the application first executes BOOL CTestApp::InitInstance() { m_pMainWnd
= new CTestWindow(); m_pMainWnd->ShowWindow(m_nCmdShow); m_pMainWnd-
>UpdateWindow(); return TRUE; } // The constructor for the window class
CTestWindow::CTestWindow() { CRect r; // Create the window itself Create(NULL,
"CStatic Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the
client rectangle GetClientRect(&r); r.InflateRect(-20,-20); // Create a static label cs = new
CStatic(); cs->Create("hello world", WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER, r,
this); }

The code of interest in listing 3.1 is in the function for the window
constructor, which is repeated below with line numbers:

CTestWindow::CTestWindow() { CRect r; // Create the window itself 1 Create(NULL,
"CStatic Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the
client rectangle 2 GetClientRect(&r); 3 r.InflateRect(-20,-20); // Create a static label 4 cs
= new CStatic(); 5 cs->Create("hello world",
WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER, r, this); }

The function first calls the CTestWindow::Create function for the window at
line 1. This is the Create function for the CFrameWnd object, since
CTestWindow inherits its behavior from CFrameWnd. The code in line 1
specifies that the window should have a size of 200 by 200 pixels and that
the upper left corner of the window should be initially placed at location 0,0
on the screen. The constant rectDefault can replace the CRect parameter if
desired.

At line 2, the code calls CTestWindow::GetClientRect, passing it the
parameter &r. The GetClientRect function is inherited from the CWnd class
(see the side-bar for search strategies to use when trying to look up functions
in the Microsoft documentation). The variable r is of type CRect and is
declared as a local variable at the beginning of the function.

Two questions arise here in trying to understand this code: 1) What does the
GetClientRect function do? and 2) What does a CRect variable do? Let's
start with question 1. When you look up the CWnd::GetClientRect function
in the MFC documentation you find it returns a structure of type CRect that
contains the size of the client rectangle of the particular window. It stores the
structure at the address passed in as a parameter, in this case &r. That
address should point to a location of type CRect. The CRect type is a class
defined in MFC. It is a convenience class used to manage rectangles. If you
look up the class in the MFC documentation, you will find that it defines over
30 member functions and operators to manipulate rectangles.

In our case, we want to center the words "Hello World" in the window.
Therefore, we use GetClientRect to get the rectangle coordinates for the

client area. In line 3 we then call CRect::InflateRect, which symmetrically
increases or decreases the size of a rectangle (see also CRect::DeflateRect).
Here we have decreased the rectangle by 20 pixels on all sides. Had we not,
the border surrounding the label would have blended into the window frame,
and we would not be able to see it.

The actual CStatic label is created in lines 4 and 5. The style attributes
specify that the words displayed by the label should be centered and
surrounded by a border. The size and position of the border is determined by
the CRect parameter r .

By modifying the different style attributes you can gain an understanding of
the different capabilities of the CStatic Object. For example, the code below
contains a replacement for the CTestWindow constructor function in the
first listing.

CTestWindow::CTestWindow() { CRect r; // Create the window itself Create(NULL,
"CStatic Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the
client rectangle GetClientRect(&r); r.InflateRect(-20,-20); // Create a static label cs = new
CStatic(); cs->Create("Now is the time for all good men to \ come to the aid of their
country", WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER, r, this); }

The code above is identical to the previous except the text string is much
longer. As you can see when you run the code, the CStatic object has
wrapped the text within the specified bounding rectangle and centered each
line individually.

If the bounding rectangle is too small to contain all the lines of text, then the
text is clipped as needed to make it fit the available space. This feature of the
CStatic object can be demonstrated by decreasing the size of the rectangle
or increasing the length of the string.

In all the code we have seen so far, the style SS_CENTER has been used to
center the text. The CStatic object also allows for left or right justification.
Left justification is created by replacing the SS_CENTER attribute with an
SS_LEFT attribute. Right justification aligns the words to the right margin
rather than the left and is specified with the SS_RIGHT attribute.

One other text attribute is available. It turns off the word wrap feature and is
used often for simple labels that identify other controls (see figure 3.1 for an
example). The SS_LEFTNOWORDWRAP style forces left justification and
causes no wrapping to take place.

Rectangular Display Modes for CStatic

The CStatic object also supports two different rectangular display modes:
solid filled rectangles and frames. You normally use these two styles to
visually group other controls within a window. For example, you might place
a black rectangular frame in a window to collect together several related
editable areas. You can choose from six different styles when creating these
rectangles: SS_BLACKFRAME, SS_BLACKRECT, SS_GRAYFRAME,
SS_GRAYRECT, SS_WHITEFRAME, and SS_WHITERECT. The RECT form is a
filled rectangle, while the FRAME form is a border. The color names are a
little misleading-for example, SS_WHITERECT displays a rectangle of the
same color as the window background. Although this color defaults to white,
the user can change it with the Control Panel and the rectangle may not be
actually white on some machines.

When a rectangle or frame attribute is specified, the CStatic 's text string is
ignored. Typically an empty string is passed. Try using several of these styles
in the previous code and observe the result.

Fonts

You can change the font of a CStatic object by creating a CFont object.
Doing so demonstrates how one MFC class can interact with another in
certain cases to modify behavior of a control. The CFont class in MFC holds a
single instance of a particular Windows font. For example, one instance of the
CFont class might hold a Times font at 18 points while another might hold a
Courier font at 10 points. You can modify the font used by a static label by
calling the SetFont function that CStatic inherits from CWnd. The code
below shows the code required to implement fonts.

CTestWindow::CTestWindow() { CRect r; // Create the window itself Create(NULL,
"CStatic Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the
client rectangle GetClientRect(&r); r.InflateRect(-20,-20); // Create a static label cs = new
CStatic(); cs->Create("Hello World", WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,
r, this); // Create a new 36 point Arial font font = new CFont; font-
>CreateFont(36,0,0,0,700,0,0,0, ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH|FF_DONTCARE, "arial"); //
Cause the label to use the new font cs->SetFont(font); }

The code above starts by creating the window and the CStatic object as
usual. The code then creates an object of type CFont. The font variable
should be declared as a data member in the CTestWindow class with the
line "CFont *font". The CFont::CreateFont function has 15 parameters (see
the MFC help file), but only three matter in most cases. For example, the 36
specifies the size of the font in points, the 700 specifies the density of the
font (400 is "normal," 700 is "bold," and values can range from 1 to 1000.
The constants FW_NORMAL and FW_BOLD have the same meanings. See the
FW constants in the API help file), and the word "arial" names the font to

use. Windows typically ships with five True Type fonts (Arial, Courier New,
Symbol, Times New Roman, and Wingdings), and by sticking to one of these
you can be fairly certain that the font will exist on just about any machine. If
you specify a font name that is unknown to the system, then the CFont class
will choose the default font seen in all the other examples used in this
tutorial.

For more information on the CFont class see the MFC documentation. There
is also a good overview on fonts in the API on-line help file. Search for "Fonts
and Text Overview."

The SetFont function comes from the CWnd class. It sets the font of a
window, in this case the CStatic child window. One question you may have at
this point is, "How do I know which functions available in CWnd apply to the
CStatic class?" You learn this by experience. Take half an hour one day and
read through all the functions in CWnd . You will learn quite a bit and you
should find many functions that allow you to customize controls. We will see
other Set functions found in the CWnd class in the next tutorial.

Conclusion

In this tutorial we looked at the many different capabilities of the CStatic
object. We left out some of the Set functions inherited from the CWnd class
so they can be discussed in Tutorial 4 where they are more appropriate.

Looking up functions in the Microsoft Documentation

In Visual C++ Version 5.x, looking up functions that you are unfamiliar with
is very simple. All of the MFC, SDK, Windows API, and C/C++ standard
library functions have all been integrated into the same help system. If you
are uncertain of where a function is defined or what syntax it uses, just use
the Search option in the Help menu. All occurrences of the function are
returned and you may look through them to select the help for the specific
function that you desire.

Compiling multiple executables

This tutorial contains several different example programs. There are two
different ways for you to compile and run them. The first way is to place each
different program into its own directory and then create a new project for
each one. Using this technique, you can compile each program separately
and work with each executeable simultaneously or independently. The
disadvantage of this approach is the amount of disk space it consumes.

The second approach involves creating a single directory that contains all of
the executables from this tutorial. You then create a single project file in that
directory. To compile each program, you can edit the project and change its
source file. When you rebuild the project, the new executable reflects the
source file that you chose. This arrangement minimizes disk consumption,
and is generally preferred.

PART 1 2 3

Introduction to MFC Programming with Visual
C++ v5.x
by Marshall Brain

Message Maps

Any user interface object that an application places in a window has two
controllable features: 1) its appearance, and 2) its behavior when responding
to events. In the last tutorial you gained an understanding of the CStatic
control and saw how you can use style attributes to customize the
appearance of user interface objects. These concepts apply to all the different
control classes available in MFC.

In this tutorial we will examine the CButton control to gain an understanding
of message maps and simple event handling. We'll then look at the
CScrollBar control to see a somewhat more involved example.

Understanding Message Maps

As discussed in Tutorial 2, MFC programs do not contain a main function or
event loop. All of the event handling happens "behind the scenes" in C++
code that is part of the CWinApp class. Because it is hidden, we need a way
to tell the invisible event loop to notify us about events of interest to the
application. This is done with a mechanism called a message map. The
message map identifies interesting events and then indicates functions to call
in response to those events.

For example, say you want to write a program that will quit whenever the
user presses a button labeled "Quit." In the program you place code to
specify the button's creation: you indicate where the button goes, what it
says, etc. Next, you create a message map for the parent of the button-

whenever a user clicks the button, it tries to send a message to its parent. By
installing a message map for the parent window you create a mechanism to
intercept and use the button's messages. The message map will request that
MFC call a specific function whenever a specific button event occurs. In this
case, a click on the quit button is the event of interest. You then put the code
for quitting the application in the indicated function.

MFC does the rest. When the program executes and the user clicks the Quit
button, the button will highlight itself as expected. MFC then automatically
calls the right function and the program terminates. With just a few lines of
code your program becomes sensitive to user events.

The CButton Class

The CStatic control discussed in Tutorial 3 is unique in that it cannot respond
to user events. No amount of clicking, typing, or dragging will do anything to
a CStatic control because it ignores the user completely. However, The
CStatic class is an anomaly. All of the other controls available in Windows
respond to user events in two ways. First, they update their appearance
automatically when the user manipulates them (e.g., when the user clicks on
a button it highlights itself to give the user visual feedback). Second, each
different control tries to send messages to your code so the program can
respond to the user as needed. For example, a button sends a command
message whenever it gets clicked. If you write code to receive the messages,
then your code can respond to user events.

To gain an understanding of this process, we will start with the CButton
control. The code below demonstrates the creation of a button.

// button1.cpp #include <afxwin.h> #define IDB_BUTTON 100 // Declare the application
class class CButtonApp : public CWinApp { public: virtual BOOL InitInstance(); }; //
Create an instance of the application class CButtonApp ButtonApp; // Declare the main
window class class CButtonWindow : public CFrameWnd { CButton *button; public:
CButtonWindow(); }; // The InitInstance function is called once // when the application
first executes BOOL CButtonApp::InitInstance() { m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow); m_pMainWnd->UpdateWindow(); return
TRUE; } // The constructor for the window class CButtonWindow::CButtonWindow() {
CRect r; // Create the window itself Create(NULL, "CButton Tests",
WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the client rectangle
GetClientRect(&r); r.InflateRect(-20,-20); // Create a button button = new CButton();
button->Create("Push me", WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON, r, this,
IDB_BUTTON); }

The code above is nearly identical to the code discussed in previous tutorials.
The Create function for the CButton class, as seen in the MFC help file,
accepts five parameters. The first four are exactly the same as those found in
the CStatic class. The fifth parameter indicates the resource ID for the

button. The resource ID is a unique integer value used to identify the button
in the message map. A constant value IDB_BUTTON has been defined at the
top of the program for this value. The "IDB_" is arbitrary, but here indicates
that the constant is an ID value for a Button. It is given a value of 100
because values less than 100 are reserved for system-defined IDs. You can
use any value above 99.

The style attributes available for the CButton class are different from those
for the CStatic class. Eleven different "BS" ("Button Style") constants are
defined. A complete list of "BS" constants can be found using Search on
CButton and selecting the "button style" link. Here we have used the
BS_PUSHBUTTON style for the button, indicating that we want this button to
display itself as a normal push-button. We have also used two familiar "WS"
attributes: WS_CHILD and WS_VISIBLE. We will examine some of the other
styles in later sections.

When you run the code, you will notice that the button responds to user
events. That is, it highlights as you would expect. It does nothing else
because we haven't told it what to do. We need to wire in a message map to
make the button do something interesting.

Creating a Message Map

The code below contains a message map as well as a new function that
handles the button click (so the program beeps when the user clicks on the
button). It is simply an extension of the prior code.

// button2.cpp #include <afxwin.h> #define IDB_BUTTON 100 // Declare the application
class class CButtonApp : public CWinApp { public: virtual BOOL InitInstance(); }; //
Create an instance of the application class CButtonApp ButtonApp; // Declare the main
window class class CButtonWindow : public CFrameWnd { CButton *button; public:
CButtonWindow(); afx_msg void HandleButton(); DECLARE_MESSAGE_MAP() }; // The
message handler function void CButtonWindow::HandleButton() { MessageBeep(-1); } //
The message map BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)
ON_BN_CLICKED(IDB_BUTTON, HandleButton) END_MESSAGE_MAP() // The InitInstance
function is called once // when the application first executes BOOL
CButtonApp::InitInstance() { m_pMainWnd = new CButtonWindow(); m_pMainWnd-
>ShowWindow(m_nCmdShow); m_pMainWnd->UpdateWindow(); return TRUE; } // The
constructor for the window class CButtonWindow::CButtonWindow() { CRect r; // Create
the window itself Create(NULL, "CButton Tests", WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200)); // Get the size of the client rectangle GetClientRect(&r);
r.InflateRect(-20,-20); // Create a button button = new CButton(); button->Create("Push
me", WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON, r, this, IDB_BUTTON); }

Three modifications have been made to the code:

1. The class declaration for CButtonWindow now contains a new member

function as well as a macro that indicates a message map is defined for
the class. The HandleButton function, which is identified as a message
handler by the use of the afx_msg tag, is a normal C++ function.
There are some special constraints on this function which we will
discuss shortly (e.g., it must be void and it cannot accept any
parameters). The DECLARE_MESSAGE_MAP macro makes the creation
of a message map possible. Both the function and the macro must be
public.

2. The HandleButton function is created in the same way as any member
function. In this function, we called the MessageBeep function
available from the Windows API.

3. Special MFC macros create a message map. In the code, you can see
that the BEGIN_MESSAGE_MAP macro accepts two parameters. The
first is the name of the specific class to which the message map applies.
The second is the base class from which the specific class is derived. It
is followed by an ON_BN_CLICKED macro that accepts two parameters:
The ID of the control and the function to call whenever that ID sends a
command message. Finally, the message map ends with the
END_MESSAGE_MAP macro.

When a user clicks the button, it sends a command message containing its ID
to its parent, which is the window containing the button. That is default
behavior for a button, and that is why this code works. The button sends the
message to its parent because it is a child window. The parent window
intercepts this message and uses the message map to determine the function
to call. MFC handles the routing, and whenever the specified message is
seen, the indicated function gets called. The program beeps whenever the
user clicks the button.

The ON_BN_CLICKED message is the only interesting message sent by an
instance of the CButton class. It is equivilent to the ON_COMMAND message
in the CWnd class, and is simply a convenient synonym for it.

Sizing Messages

In the code above, the application's window, which is derived from the
CFrameWnd class, recognized the button-click message generated by the
button and responded to it because of its message map. The
ON_BN_CLICKED macro added into the message map (search for the
CButton overview as well as the the ON_COMMAND macro in the MFC help
file) specifies the ID of the button and the function that the window should
call when it receives a command message from that button. Since the button
automatically sends to its parent its ID in a command message whenever the
user clicks it, this arrangement allows the code to handle button events
properly.

The frame window that acts as the main window for this application is also
capable of sending messages itself. There are about 100 different messages
available, all inherited from the CWnd class. By browsing through the
member functions for the CWnd class in MFC help file you can see what all of
these messages are. Look for any member function beginning with the word
"On".

You may have noticed that all of the code demonstrated so far does not
handle re-sizing very well. When the window re-sizes, the frame of the
window adjusts accordingly but the contents stay where they were placed
originally. It is possible to make resized windows respond more attractively
by recognizing resizing events. One of the messages that is sent by any
window is a sizing message. The message is generated whenever the window
changes shape. We can use this message to control the size of child windows
inside the frame, as shown below:

// button3.cpp #include <afxwin.h> #define IDB_BUTTON 100 // Declare the application
class class CButtonApp : public CWinApp { public: virtual BOOL InitInstance(); }; //
Create an instance of the application class CButtonApp ButtonApp; // Declare the main
window class class CButtonWindow : public CFrameWnd { CButton *button; public:
CButtonWindow(); afx_msg void HandleButton(); afx_msg void OnSize(UINT, int, int);
DECLARE_MESSAGE_MAP() }; // A message handler function void
CButtonWindow::HandleButton() { MessageBeep(-1); } // A message handler function
void CButtonWindow::OnSize(UINT nType, int cx, int cy) { CRect r; GetClientRect(&r);
r.InflateRect(-20,-20); button->MoveWindow(r); } // The message map
BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd) ON_BN_CLICKED(IDB_BUTTON,
HandleButton) ON_WM_SIZE() END_MESSAGE_MAP() // The InitInstance function is called
once // when the application first executes BOOL CButtonApp::InitInstance() {
m_pMainWnd = new CButtonWindow(); m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow(); return TRUE; } // The constructor for the window class
CButtonWindow::CButtonWindow() { CRect r; // Create the window itself Create(NULL,
"CButton Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get the size of the
client rectangle GetClientRect(&r); r.InflateRect(-20,-20); // Create a button button = new
CButton(); button->Create("Push me", WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON, r, this,
IDB_BUTTON); }

To understand this code, start by looking in the message map for the
window. There you will find the entry ON_WM_SIZE. This entry indicates that
the message map is sensitive to sizing messages coming from the
CButtonWindow object. Sizing messages are generated on this window
whenever the user re-sizes it. The messages come to the window itself
(rather than being sent to a parent as the ON_COMMAND message is by the
button) because the frame window is not a child.

Notice also that the ON_WM_SIZE entry in the message map has no
parameters. As you can see in the MFC documentation under the CWnd
class, it is understood that the ON_WM_SIZE entry in the message map will
always call a function named OnSize , and that function must accept the

three parameters shown . The OnSize function must be a member function
of the class owning the message map, and the function must be declared in
the class as an afx_msg function (as shown in the definition of the
CButtonWindow class).

If you look in the MFC documentation there are almost 100 functions named
"On..." in the CWnd class. CWnd::OnSize is one of them. All these functions
have a corresponding tag in the message map with the form ON_WM_. For
example, ON_WM_SIZE corresponds to OnSize. None of the ON_WM_
entries in the message map accept parameters like ON_BN_CLICKED does.
The parameters are assumed and automatically passed to the corresponding
"On..." function like OnSize.

To repeat, because it is important: The OnSize function always corresponds
to the ON_WM_SIZE entry in the message map. You must name the handler
function OnSize, and it must accept the three parameters shown in the
listing. You can find the specific parameter requirements of any On...
function by looking up that function in the MFC help file. You can look the
function up directly by typing OnSize into the search window, or you can find
it as a member function of the CWnd class.

Inside the OnSize function itself in the code above, three lines of code
modify the size of the button held in the window. You can place any code you
like in this function.

The call to GetClientRect retrieves the new size of the window's client
rectangle. This rectangle is then deflated, and the MoveWindow function is
called on the button. MoveWindow is inherited from CWnd and re-sizes and
moves the child window for the button in one step.

When you execute the program above and re-size the application's window,
you will find the button re-sizes itself correctly. In the code, the re-size event
generates a call through the message map to the OnSize function, which
calls the MoveWindow function to re-size the button appropriately.

Window Messages

By looking in the MFC documentation, you can see the wide variety of CWnd
messages that the main window handles. Some are similar to the sizing
message seen in the previous section. For example, ON_WM_MOVE messages
are sent when a user moves a window, and ON_WM_PAINT messages are
sent when any part of the window has to be repainted. In all of our programs
so far, repainting has happened automatically because controls are
responsible for their own appearance. If you draw the contents of the client
area yourself with GDI commands (see the book "Windows NT Programming:

http://www.iftech.com/index.asp?qmainframe=books.asp

An Introduction Using C++ " for a complete explanation) the application is
responsible for repainting any drawings it places directly in the window. In
this context the ON_WM_PAINT message becomes important.

There are also some event messages sent to the window that are more
esoteric. For example, you can use the ON_WM_TIMER message in
conjunction with the SetTimer function to cause the window to receive
messages at pre-set intervals. The code below demonstrates the process.
When you run this code, the program will beep once each second. The
beeping can be replaced by a number of useful processes.

// button4.cpp #include <afxwin.h> #define IDB_BUTTON 100 #define IDT_TIMER1 200
// Declare the application class class CButtonApp : public CWinApp { public: virtual BOOL
InitInstance(); }; // Create an instance of the application class CButtonApp ButtonApp; //
Declare the main window class class CButtonWindow : public CFrameWnd { CButton
*button; public: CButtonWindow(); afx_msg void HandleButton(); afx_msg void
OnSize(UINT, int, int); afx_msg void OnTimer(UINT); DECLARE_MESSAGE_MAP() }; // A
message handler function void CButtonWindow::HandleButton() { MessageBeep(-1); } //
A message handler function void CButtonWindow::OnSize(UINT nType, int cx, int cy) {
CRect r; GetClientRect(&r); r.InflateRect(-20,-20); button->MoveWindow(r); } // A
message handler function void CButtonWindow::OnTimer(UINT id) { MessageBeep(-1); }
// The message map BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)
ON_BN_CLICKED(IDB_BUTTON, HandleButton) ON_WM_SIZE() ON_WM_TIMER()
END_MESSAGE_MAP() // The InitInstance function is called once // when the application
first executes BOOL CButtonApp::InitInstance() { m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow); m_pMainWnd->UpdateWindow(); return
TRUE; } // The constructor for the window class CButtonWindow::CButtonWindow() {
CRect r; // Create the window itself Create(NULL, "CButton Tests",
WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Set up the timer
SetTimer(IDT_TIMER1, 1000, NULL); // 1000 ms. // Get the size of the client rectangle
GetClientRect(&r); r.InflateRect(-20,-20); // Create a button button = new CButton();
button->Create("Push me", WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON, r, this,
IDB_BUTTON); }

Inside the program above we created a button, as shown previously, and left
its re-sizing code in place. In the constructor for the window we also added a
call to the SetTimer function. This function accepts three parameters: an ID
for the timer (so that multiple timers can be active simultaneously, the ID is
sent to the function called each time a timer goes off), the time in
milliseconds that is to be the timer's increment, and a function. Here, we
passed NULL for the function so that the window's message map will route
the function automatically. In the message map we have wired in the
ON_WM_TIMER message, and it will automatically call the OnTimer function
passing it the ID of the timer that went off.

When the program runs, it beeps once each 1,000 milliseconds. Each time
the timer's increment elapses, the window sends a message to itself. The
message map routes the message to the OnTimer function, which beeps.
You can place a wide variety of useful code into this function.

http://www.iftech.com/index.asp?qmainframe=books.asp

Scroll Bar Controls

Windows has two different ways to handle scroll bars. Some controls, such as
the edit control and the list control, can be created with scroll bars attached.
When this is the case, the master control handles the scroll bars
automatically. For example, if an edit control has its scroll bars active then,
when the scroll bars are used, the edit control scrolls as expected without any
additional code.

Scroll bars can also work on a stand-alone basis. When used this way they
are seen as independent controls in their own right. You can learn more
about scroll bars by referring to the CScrollBar section of the MFC reference
manual. Scroll bar controls are created the same way we created static labels
and buttons. They have four member functions that allow you to get and set
both the range and position of a scroll bar.

The code shown below demonstrates the creation of a horizontal scroll bar
and its message map.

// sb1.cpp #include <afxwin.h> #define IDM_SCROLLBAR 100 const int
MAX_RANGE=100; const int MIN_RANGE=0; // Declare the application class class
CScrollBarApp : public CWinApp { public: virtual BOOL InitInstance(); }; // Create an
instance of the application class CScrollBarApp ScrollBarApp; // Declare the main window
class class CScrollBarWindow : public CFrameWnd { CScrollBar *sb; public:
CScrollBarWindow(); afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CScrollBar*
pScrollBar); DECLARE_MESSAGE_MAP() }; // The message handler function void
CScrollBarWindow::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar) {
MessageBeep(-1); } // The message map BEGIN_MESSAGE_MAP(CScrollBarWindow,
CFrameWnd) ON_WM_HSCROLL() END_MESSAGE_MAP() // The InitInstance function is
called once // when the application first executes BOOL CScrollBarApp::InitInstance() {
m_pMainWnd = new CScrollBarWindow(); m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow(); return TRUE; } // The constructor for the window class
CScrollBarWindow::CScrollBarWindow() { CRect r; // Create the window itself
Create(NULL, "CScrollBar Tests", WS_OVERLAPPEDWINDOW, CRect(0,0,200,200)); // Get
the size of the client rectangle GetClientRect(&r); // Create a scroll bar sb = new
CScrollBar(); sb->Create(WS_CHILD|WS_VISIBLE|SBS_HORZ, CRect(10,10,r.Width()-
10,30), this, IDM_SCROLLBAR); sb->SetScrollRange(MIN_RANGE,MAX_RANGE,TRUE); }

Windows distinguishes between horizontal and vertical scroll bars and also
supports an object called a size box in the CScrollBar class. A size box is a
small square. It is formed at the intersection of a horizontal and vertical scroll
bar and can be dragged by the mouse to automatically re-size a window.
Looking at the code in listing 4.5, you can see that the Create function
creates a horizontal scroll bar using the SBS_HORZ style. Immediately
following creation, the range of the scroll bar is set for 0 to 100 using the two
constants MIN_RANGE and MAX_RANGE (defined at the top of the listing) in
the SetScrollRange function.

The event-handling function OnHScroll comes from the CWnd class. We
have used this function because the code creates a horizontal scroll bar. For a
vertical scroll bar you should use OnVScroll. In the code here the message
map wires in the scrolling function and causes the scroll bar to beep
whenever the user manipulates it. When you run the code you can click on
the arrows, drag the thumb, and so on. Each event will generate a beep, but
the thumb will not actually move because we have not wired in the code for
movement yet.

Each time the scroll bar is used and OnHScroll is called, your code needs a
way to determine the user's action. Inside the OnHScroll function you can
examine the first parameter passed to the message handler, as shown below.
If you use this code with the code above, the scroll bar's thumb will move
appropriately with each user manipulation.

// The message handling function void CScrollBarWindow::OnHScroll(UINT nSBCode, UINT
nPos, CScrollBar* pScrollBar) { int pos; pos = sb->GetScrollPos(); switch (nSBCode) {
case SB_LINEUP: pos -= 1; break; case SB_LINEDOWN: pos += 1; break; case
SB_PAGEUP: pos -= 10; break; case SB_PAGEDOWN: pos += 10; break; case SB_TOP:
pos = MIN_RANGE; break; case SB_BOTTOM: pos = MAX_RANGE; break; case
SB_THUMBPOSITION: pos = nPos; break; default: return; } if (pos < MIN_RANGE) pos
= MIN_RANGE; else if (pos > MAX_RANGE) pos = MAX_RANGE; sb->SetScrollPos(pos,
TRUE); }

The different constant values such as SB_LINEUP and SB_LINEDOWN are
described in the CWnd::OnHScroll function documentation. The code above
starts by retrieving the current scroll bar position using GetScrollPos. It
then decides what the user did to the scroll bar using a switch statement. The
constant value names imply a vertical orientation but are used in horizontal
scroll bars as well: SB_LINEUP and SB_LINEDOWN apply when the user clicks
the left and right arrows. SB_PAGEUP and SB_PAGEDOWN apply when the
user clicks in the shaft of the scroll bar itself. SB_TOP and SB_BOTTOM apply
when the user moves the thumb to the top or bottom of the bar.
SB_THUMBPOSITION applies when the user drags the thumb to a specific
position. The code adjusts the position accordingly, then makes sure that it's
still in range before setting the scroll bar to its new position. Once the scroll
bar is set, the thumb moves on the screen to inform the user visually.

A vertical scroll bar is handled the same way as a horizontal scroll bar except
that you use the SBS_VERT style and the OnVScroll function. You can also
use several alignment styles to align both the scroll bars and the grow box in
a given client rectangle.

Understanding Message Maps

The message map structure is unique to MFC. It is important that you
understand why it exists and how it actually works so that you can exploit
this structure in your own code.

Any C++ purist who looks at a message map has an immediate question:
Why didn't Microsoft use virtual functions instead? Virtual functions are the
standard C++ way to handle what mesage maps are doing in MFC, so the use
of rather bizarre macros like DECLARE_MESSAGE_MAP and
BEGIN_MESSAGE_MAP seems like a hack.

MFC uses message maps to get around a fundamental problem with virtual
functions. Look at the CWnd class in the MFC help file. It contains over 200
member functions, all of which would have to be virtual if message maps
were not used. Now look at all of the classes that subclass the CWnd class.
For example, go to the contents page of the MFC help file and look at the
visual object hierarchy. 30 or so classes in MFC use CWnd as their base
class. This set includes all of the visual controls such as buttons, static labels,
and lists. Now imagine that MFC used virtual functions, and you created an
application that contained 20 controls. Each of the 200 virtual functions in
CWnd would require its own virtual function table, and each instance of a
control would therefore have a set of 200 virtual function tables associated
with it. The program would have roughly 4,000 virtual function tables floating
around in memory, and this is a problem on machines that have memory
limitations. Because the vast majority of those tables are never used, they
are unneeded.

Message maps duplicate the action of a virtual function table, but do so on an
on-demand basis. When you create an entry in a message map, you are
saying to the system, "when you see the specified message, please call the
specified function." Only those functions that actually get overridden appear
in the message map, saving memory and CPU overhead.

When you declare a message map with DECLARE_MESSAGE_MAP and
BEGIN_MESSAGE_MAP, the system routes all messages through to your
message map. If your map handles a given message, then your function gets
called and the message stops there. However, if your message map does not
contain an entry for a message, then the system sends that message to the
class specified in the second parameter of BEGIN_MESSAGE_MAP. That class
may or may not handle it and the proces repeats. Eventually, if no message
map handles a given message, the message arrives at a default handler that
eats it.

Conclusion

All the message handling concepts described in this tutorial apply to every

one of the controls and windows available in NT. In most cases you can use
the ClassWizard to install the entries in the message map, and this makes the
task much easier. For more information on the ClassWizard, AppWizard and
the resource editors see the tutorials on these topics on the MFC Tutorials
page.

PART 1 2 3

Chapter 1

Tool Bar and Dialog
Bar

Tool bar and dialog bar are used extensively in all types of applications. They
provide users with a better way of executing application commands. Generally a
tool bar comprises a series of buttons; each button represents a specific
command. A command implemented by the tool bar can be linked directly to a
menu command, in which case the two items share a same command ID. Both
menu and tool bar handle WM_COMMAND message for executing commands.
Besides, they also handle UPDATE_COMMAND_UI message to set the state of a
button or a menu item. In fact, this message is very effective in enabling,
disabling, and setting checked or unchecked state for a command.

While tool bar usually contains bitmap buttons, dialog bar can include many other
type of controls that can be used in a dialog box, such as edit control, spin
control, etc. Both tool bar and dialog bar can be implemented either as floated or
docked, this gives users more choices in customizing the user interface of an
application.

In MFC, classes that can be used to implement the tool bar and dialog bar are
CToolBar and CDialogBar respectively. Both of them are derived from class
CControlBar, which implements bar creation, command message mapping, control
bar docking and floating (both tool bar and dialog bar are called control bar).
Besides the default attributes, class CToolBar further supports bitmap button
creation, automatic size adjustment for different states (docked or floated). A
dialog bar can be treated as a dialog box (There is one difference here: a dialog
bar can be either docked or floated, a dialog box does not have this feature): its
implementation is based on a dialog template; all the common controls supported
by dialog box can also be used in a dialog bar; their message mapping
implementations are exactly the same.

A standard SDI or MDI application created by Application Wizard will have a
default dockable tool bar. From now on we will discuss how to add extra tool bars

and dialog bars, how to implement message mapping for the controls contained in
a control bar, and how to customize their default behavior.

1.1. Adding an Extra Docking Tool Bar

Default Tool Bar

When using Application Wizard to generate SDI or MDI application skeleton, we
can ask it to create a default docking tool bar for us. This can be done in the step
4 (see Figure 1-1). The default tool bar shares the same ID with the mainframe
menu. It has eight bitmap buttons, which are all shortcuts to the menu
commands. After executing this application, we will see a tool bar docked to the
top border of the mainframe window. By using the mouse, we can easily either
float it or dock it to other borders.

The tool bar resource can be opened in the Developer Studio. If we click
"ResourceView" tab at the bottom of "Workspace" window, all the resources being
used by the application will be listed within the window. If we asked Application
Wizard to add a default tool bar for us, we will see a "Toolbar" resource node. By
expanding this node (clicking on "+" node button or double clicking on the label),
we will see all tool bar resources used by the application. If we double click on
"IDR_MAINFRAME" ID, the tool bar bitmap will be displayed in "Tool Bar Edit"
window. We can edit or delete an existing bitmap (each bitmap will be used to
create a bitmap button). We can also add new bitmaps and assign them command
IDs. When doing this, we can either use an existing menu command ID or a newly
created one. In the latter case, we need to implement message mapping
afterwards.

The Application Wizard does an excellent job in adding a very powerful tool bar.
Nevertheless, as a programmer, we are kept from knowing what makes all these
happen. If we need to make changes to the default tool bar (for example, we
want it to be docked to the bottom border instead of top border at the beginning),
which part of the source code should we modify? Obviously, we need to
understand the essentials of tool bar implementation in order to customize it.

Like menu, generally tool bar is implemented in the mainframe window. When
creating a mainframe menu, we need to prepare a menu resource, use class
CMenu to declare a variable, then use it to load the menu resource. Creating a tool
bar takes similar steps: we need to prepare a tool bar resource, use class CToolBar
to declare a variable, which can be used to load the tool bar resource. After the
tool bar resource is loaded successfully, we can call a series of member functions
of CToolBar to create the tool bar and customize its styles.

After creating a standard SDI or MDI application using Application Wizard (with
"Docking toolbar" check box checked in step 4, see Figure 1-1), we will find that a
CToolBar type variable is declared in class CMainFrame:

class CMainFrame : public CFrameWnd

{

……

protected: // control bar embedded members

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

……

}

The newly declared variable is m_wndToolBar. By tracing this variable, we will find
out how the tool bar is implemented.

Tool Bar Implementation

Tool bar creation occurs in function CMainFrame::OnCreate(…), where the mainframe
window is being created. Tool bar is created after function CFrameWnd::OnCreate(…)
is called, which creates the default mainframe window. Creating a tool bar takes
following steps:

1. Call CToolBar::Create(…) to create tool bar window.
2. Call CToolBar::LoadToolBar(…) to load the tool bar resource. We need to pass a

tool bar resource ID to this function.
3. Call CToolBar::SetBarStyle(…) to set the attributes of the tool bar. For example,

by setting different flags, we can let the tool bar have fixed or dynamic size.
Besides this, we can also enable tool tips and flybys for tool bar buttons.

4. To make the tool bar dockable, we need to call function
CToolBar::EnableDocking(…) and pass appropriate flags to it indicating which
borders the tool bar could be docked (We can make the tool bar dockable to
all four borders, or only top border, bottom border, etc.)

5. To dock the tool bar, we need to call function CMainFrame::DockControlBar(…).
If we have more than one tool bar or dialog bar, this function should be
called for each of them.

We need above five steps to implement a tool bar and set its attributes.

Message Mapping

Since tool bars are used to provide an alternate way of executing commands, we
need to implement message mapping for the controls contained in a tool bar. This
will allow the message handlers to be called automatically as the user clicks a tool
bar button. The procedure of implementing message mapping for a tool bar
control is exactly the same with that of a menu item. In MFC, this is done through
declaring an afx_msg type member function and adding macros such as
ON_COMMAND and ON_UPDATE_COMMAND_UI.

The message mapping could be implemented in any of the four default classes
derived from CWinApp, CFrameWnd, CView and CDocument. Throughout this book, we
will implement most of the message mappings in document. This is because for
document/view structure, document is the center of the application and should be
used to store data. By executing commands within the document, we don’t bother
to obtain data from other classes from time to time.

The following lists necessary steps of implementing message mapping:

1. Declare afx_msg type member functions.
2. Implement these member functions for message handling.
3. Add message mapping macros between BEGIN_MESSAGE_MAP and

END_MESSAGE_MAP (which are generated by Application Wizard). We need to
use ON_COMMAND macro to map WM_COMMAND message, and use
ON_UPDATE_COMMAND_UI macro to implement user interface updating. The
message mapping should have the following format:

BEGIN_MESSAGE_MAP(class name, base class name)

//{{AFX_MSG_MAP(class name)

ON_COMMAND(command ID, member function name)

ON_UPDATE_COMMAND_UI(command ID, member function name)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

Most of the time message mapping could be implemented through using Class
Wizard. In this case we only need to select a command ID and confirm the name
of message handler. Although Class Wizard does an excellent job in implementing
message mapping, sometimes we still need to add it manually because Class
Wizard is not powerful enough to handle all cases.

Adding New Tool Bar Resource

Now that we understand how the default tool bar is implemented, it is easy for us
to add extra tool bars. We can declare CToolBar type variables in class CMainFrame,
create tool bars and set their styles in function CMainFrame::OnCreate(…). Then we
can map tool bar command IDs to member functions so that the commands can
be executed by mouse clicking.

Sample 1.1-1\Bar and 1.1-2\Bar demonstrate the above procedure. In the two
applications, apart from the default tool bar, an extra tool bar that has four
different buttons is added. Each button is painted with a different color: red,
green, blue and yellow. If we click on one of them, a message box will pop up
telling us the color of the button.

First we need to use Application Wizard to create a standard SDI application
named "Bar", leaving all the settings as default. This will generate an application
with a mainframe menu, a dockable tool bar and a status bar. The default four
class names are CBarApp, CMainFrame, CBarDoc, CBarView.

Before modifying source code to add the second tool bar, we need to prepare the
tool bar resource. In order to do this, we need the following steps to create a tool
bar resource that contains four bitmap buttons:

1. Load the application project into Developer Studio.
2. Execute Insert | Resource… command from the menu (or press CTRL+R

keys). We will be prompted to select resource type from a dialog box. If we
highlight "toolbar" node and click the button labeled "New", a new blank tool

bar resource "IDR_TOOLBAR1" will be added to the project. Since default ID
doesn’t provide us much implication, usually we need to modify it so that it
can be easily understood. In the samples, the newly added tool bar resource
ID is changed to IDR_COLOR_BUTTON. This can be implemented by right
clicking on "IDR_TOOLBAR1" node in WorkSpace window, and selecting
"Properties" item from the popped up menu. Now a property sheet whose
caption is "Toolbar properties" will pop up, which contains an edit box that
allows us to modify the resource ID of the tool bar.

3. Using the edit tools supplied by the Developer Studio, add four buttons to
the tool bar, paint bitmaps with red, green, blue and yellow colors, change
their IDs to ID_BUTTON_RED, ID_BUTTON_GREEN, ID_BUTTON_BLUE,
ID_BUTTON_YELLOW. The tool bar bitmap window could be activated by double
clicking on the tool bar IDs contained in the WorkSpace window, the graphic
tools and color can be picked from "Graphics" and "Colors" windows. If they
are not available, we can enable them by customizing the Developer Studio
environment by executing Tools | Customize… command from the menu.

Declaring New Member Variable

After the resource is ready, we can add code to implement the tool bar.

The first step is to declare a new variable using CToolBar in class CMainFrame:

class CMainFrame : public CFrameWnd

{

……

protected:

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

CToolBar m_wndColorButton;

……

};

The new variable is m_wndColorButton, it is added right after other two variables
that are used to implement the default tool bar and status bar.

Next, we can open file "MainFrm.cpp" and go to function
CMainFrame::OnCreateClient(…). In Developer Studio, the easiest way to locate a
member function is to right click on the function name in "WorkSpace" window,
then select "Go to Definition" menu item from the popped up menu. Let’s see how
the default tool bar is created:

……

if (!m_wndToolBar.Create(this) ||

!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

{

TRACE0("Failed to create toolbar\n");

return -1;

}

……

Function CToolBar::Create(…) is called first to create the tool bar window. Then
CToolBar::LoadToolBar(…) is called to load the bitmaps (contained in tool bar
resource IDR_MAINFRAME). When calling function CToolBar::Create(…), we need to
specify the parent window of the tool bar by providing a CWnd type pointer
(Generally, a tool bar must be owned by another window). Because this function
is called within the member function of class CMainFrame, we can use "this" as the
pointer of parent window.

The following code fragment shows how the styles of the default tool bar are set:

m_wndToolBar.SetBarStyle

(

m_wndToolBar.GetBarStyle() | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC

);

Function CToolBar::SetBarStyle(…) sets tool bar’s styles, which can be a combination
of different style flags using bit-wise OR operation. Because we do not want to
lose the default styles, first function CToolBar::GetBarStyle() is called to retrieve the

default tool bar styles, then new styles are combined with the old ones using bit-
wise OR operation. In the above code fragment, three new styles are added to the
tool bar: first, flag CBRS_TOOLTIPS will enable tool tips to be displayed when the
mouse cursor passes over a tool bar button and stay there for a few seconds;
second, flag CBRS_FLYBY will cause the status bar to display a flyby about this
button (For details of tool tip and flyby, see section 1.11); third, flag
CBRS_SIZE_DYNAMIC will allow the user to dynamically resize the tool bar, if we do
not specify this style, the dimension of the tool bar will be fixed.

The following statement enables a dockable tool bar:

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);

Function CToolBar::EnableDocking(…) makes the tool bar dockable. Here, flag
CBRS_ALIGN_ANY indicates that the tool bar may be docked to any of the four
boarders of the frame window. We may change it to CBRS_ALIGN_TOP,
CBRS_ALIGN_BOTTOM, CBRS_ALIGN_LEFT, or different combinations of these flags,
whose meanings are self-explanatory.

The dockable tool bar still can’t be docked if the frame window does not support
this feature. We must call function CFrameWnd::EnableDocking(…) to support docking
in the frame window and call CFrameWnd::DockControlBar(…) for each control bar to
really dock it. The following code fragment shows how the two functions are called
for the default tool bar:

EnableDocking(CBRS_ALIGN_ANY);

DockControlBar(&m_wndToolBar);

Like function CCtrlBar::EnableDocking(…), CFrameWnd::EnableDocking(…) uses the same
parameters to specify where a control bar is allowed to be docked.

Creating New Tool Bar

We need to do the same thing for the newly declared variable m_wndColorButton.
We can call the above-mentioned functions to create tool bar window, set its
styles, enable docking, and dock it. The following code fragment shows the
updated function CMainFrame::OnCreate(…):

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (CFrameWnd::OnCreate(lpCreateStruct) == -1)

return -1;

if (!m_wndToolBar.Create(this) ||

!m_wndToolBar.LoadToolBar(IDR_MAINFRAME))

{

TRACE0("Failed to create toolbar\n");

return -1;

}

if (!m_wndColorButton.Create(this) ||

!m_wndColorButton.LoadToolBar(IDR_COLOR_BUTTON))

{

TRACE0("Failed to create toolbar\n");

return -1;

}

if (!m_wndStatusBar.Create(this) ||

!m_wndStatusBar.SetIndicators(indicators,

sizeof(indicators)/sizeof(UINT)))

{

TRACE0("Failed to create status bar\n");

return -1;

}

m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |

CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);

m_wndColorButton.SetBarStyle(m_wndColorButton.GetBarStyle() |

CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

m_wndColorButton.EnableDocking(CBRS_ALIGN_ANY);

EnableDocking(CBRS_ALIGN_ANY);

DockControlBar(&m_wndToolBar);

DockControlBar(&m_wndColorButton);

return 0;

}

By compiling and executing the sample application at this point, we can see that
the tool bar has been created. The tool bar can be docked to one of the four
borders of the mainframe window or be floated. If we dock the tool bar to either
left or right border, we will see that the tool bar will automatically have a vertical
layout. This feature is supported by class CToolBar, we don’t need to add any line
of code in order to have it.

Command Message Mapping

The new tool bar looks very disappointing. Although we made much effort to add
it, none of its buttons can be used to execute command. This is because we still
haven’t implemented any message handler for the new commands, therefore the
buttons will be disabled all the time.

In Windowsä applications, commands are executed through sending WM_COMMAND
message. As the user clicks a menu command or a tool bar button, the system
will send a WM_COMMAND message to the application. All the Windowsä messages
have two parameters, WPARAM and LPARAM (They are nothing but two integers, as
an application receives a message, it will also receive the message parameters).
For WM_COMMAND message, its WPARAM parameter is used to store the control ID
(Command ID, such as ID_BUTTON_RED in our samples), which can be examined
by the application to make appropriate response.

In a general Windowsä application, message is received and processed by a
callback function. When an application is initialized, it stores the address of the
callback function in the system. When a message is generated, the system uses
this address to call the callback function and pass the message as well as the
associated parameters to the application. Besides processing the message, the
application can also choose to pass the message to other applications in the
system.

If an application has callback function, we can process message WM_COMMAND
within it. A general callback function for this purpose looks like the following:

LONG APIENTRY CallBackProc

(

HWND hwnd,

UINT message,

DWORD wParam,

LONG lParam)

{

switch (message)

{

case WM_CREATE:

{

……

break;

}

case WM_COMMAND:

{

switch(wParam)

{

case ID_BUTTON_RED:

{

……

}

case ID_BUTTON_GREEN:

{

……

}

……

}

break;

}

{

……

}

There are many types of messages, so parameter message (second parameter of
the above function) could be any of the predefined values. If we want to trap
mouse clicking events on the tool bar buttons, we need to handle WM_COMMAND
message. We can see that within the WM_COMMAND case of switch statement in the
above example, parameter wParam is checked (It holds WPARAM parameter of the
message). By comparing it with the IDs of our buttons, we are able to find out
which command is being executed by the user.

MFC handles Windowsä message in a different way. Because MFC applications are
built upon classes, it is more convenient to handle messages within class member
functions instead of one big callback function. In MFC, this is achieved through
message mapping: we can implement the functions that will be used to execute
commands, and use macros defined in MFC to direct the messages into these
member functions.

As mentioned before, doing message mapping generally takes three steps:
declaring afx_msg type member functions, using ON_COMMAND and
ON_UPDATE_COMMAND_UI macros to implement mappings, and implementing the
member functions.

For WM_COMMAND type message, the message handling functions do not have any
parameters and should return void type value (For other type of messages, the
format of the functions may be different). The message mapping can be
implemented by using ON_COMMAND macro, which has the following format:

ON_COMMAND(control ID, member function name)

For example, if we have a member function OnButtonRed() in class CBarDoc, and we
want to map WM_COMMAND message to this function when the user clicks red
button (whose ID is ID_BUTTON_RED), we can implement message mapping as
follows:

BEGIN_MESSAGE_MAP(CBarDoc, CDocument)

ON_COMMAND(ID_BUTTON_RED, OnButtonRed)

END_MESSAGE_MAP()

Message mapping macros must be done between BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP. Please note that if we want member functions of other classes
to receive the same message, we must implement message mapping for each
class separately.

Class Wizard is designed to help us deal with message mapping. It provides us
with a way of adding message handlers very easily: all we need to do is picking
up messages and confirming the names of the member functions. The following
descriptions list necessary steps of adding a message handler for button
ID_BUTTON_RED in class CBarDoc through using Class Wizard (also see Figure 1-2):

1. In the Developer Studio, execute command View | ClassWizard… (or
press CTRL+W keys).

2. From the popped up property sheet, click "Message Maps" tab (if the current
page is not "Message Maps").

3. From "Class name" combo box, select "CBarDoc" if it is not the default class
name (If the file being edited is "BarDoc.cpp", the default class name should
be "CBarDoc").

4. From "Object Ids" window, highlight "ID_BUTTON_RED".
5. From "Messages" window, highlight "COMMAND".
6. Click "Add Function" button.
7. From the popped up dialog box, confirm the function name that will be used

as the message handler (we may change the name according to our
preference).

8. The function will be added to window "Member functions". Now we can
repeat steps 4 through 7 to add message handlers for other IDs. When
finished, we need to click "OK" button.

After dismissing the Class Wizard, the functions just added will be shown in the
Developer Studio. By default, the message handlers are empty at the beginning,
and we can add anything we want. For example, if we want a message box to pop
up telling the color of the button when the user clicks it with mouse, we may
implement the ID_BUTTON_RED message hander as follows:

void CBarDoc::OnButtonRed()

{

AfxMessageBox("Red");

}

Similarly, we can write message handlers for other three buttons. In sample
application 1.1-2\Bar, message handlers for all the four buttons on tool bar
IDR_COLOR_BUTTON are implemented. If the user clicks any of the four buttons, a
message box will pop up telling its color.

1.2. Imitating the Behavior of Radio Buttons

The buttons can be used more than just executing commands. Actually, they can
serve other purposes such as status indication. We can use the buttons contained
in a tool bar to imitate other two types of buttons used in dialog box: check box
and radio button. When a check box is clicked, it will toggle between Checked and
Unchecked states. For a radio button, only the unchecked button will toggle to
checked state after being clicked. Also, at any time, only one radio button within a
group can be checked.

Radio Button & Check Box

Although check box, radio button and push button look very differently from one
another, they are essentially same type of controls. All of them can handle
command messages, and their status can be set using the same function. The
only difference among them is how they behave after being clicked by mouse. For
a push button, after being clicked, it will go to checked state, as the mouse
releases, it will automatically return to its normal state; for a check box, it toggles
between checked and unchecked states after being clicked (it does not respond to
mouse button release events); for a radio button, checking any button in a group
will uncheck the previously checked button, so that at any time, only one button
within a group could be checked.

On a tool bar, implementing normal check box and radio button does not make
much sense, so they are not included as default features. If we want to add these
controls, we can use dialog bar rather than tool bar. However, if we want the
features of radio button and check box, we can use normal push buttons to
imitate the behaviors of two types of controls.

The key of letting a push button behave like radio button and check box is to find
a way of setting the states of buttons contained in the tool bar. In MFC, the states
of tool bar buttons are managed in the same way with that of menu items. We
can set a button’s state by trapping user-interface update command message
(UPDATE_COMMAND_UI), then calling member functions of class CCmdUI to change a
button’s state. In order to map this massage to a member function, we need to
use ON_UPDATE_COMMAND_UI macro. The following is the format of this message
mapping:

ON_UPDATE_COMMAND_UI(command ID, member function name)

The format of the corresponding member function is:

afx_msg void FunctionName(CCmdUI *pCmdUI);

The function has only one parameter, which is the pointer to a CCmdUI object.
Class CCmdUI handles user-interface updating for tool bar buttons and menu
items. Some most commonly used member functions are listed in the following
table:

Function Usage

CCmdUI::Enable(…) Enable or disable a control

CCmdUI::SetCheck(…) Set or remove the check state of a control

CCmdUI::SetRadio(…) Set check state of a control, remove check state of all
other controls in the group

From time to time, the operating system will send user-interface update
command messages to the application, if there exists macros implementing the
above-mentioned message mapping for any control contained in the tool bar, the
control’s state can be set within the corresponding message handler.

For a concrete example, if we want to disable ID_BUTTON_RED button under certain
situations, we can declare a member function OnUpdateButtonRed(…) in class CBarDoc
as follows (of course, we can also handle this message in other three classes):

class CBarDoc : public CDocument

{

……

protected:

afx_msg void OnUpdateButtonRed(CCmdUI *pCmdUI);

……

};

The message mapping can be implemented in file "BarDoc.cpp":

BEGIN_MESSAGE_MAP(CBarDoc, CDocument)

ON_UPDATE_COMMAND_UI(ID_BUTTON_RED, OnUpdateButtonRed)

END_MESSAGE_MAP()

The member function can be implemented as follows:

void CBarDoc::OnUpdateButtonRed(CCmdUI *pCmdUI)

{

if(under certain situations)pCmdUI->Enable(FALSE);

else pCmdUI->Enable(TRUE);

}

Usually we use a Boolean type variable as the flag, which represents "certain
situations" in the above if statement. We can toggle this flag in other functions,
this will cause the button state to be changed automatically. By doing this, the
button’s state is synchronized with the variable.

To set check state for a button, all we need to do is calling function
CCmdUI::SetCheck(…) instead of CCmdUI::Enable(…) in the message handler.

Sample

Sample 1.2\Bar demonstrates how to make the four color buttons behave like
radio buttons. At any time, one and only one button will be set to checked state
(it will recess and give the user an impression that it is being held down).

To implement this feature, a member variable m_uCurrentBtn is declared in class
CBarDoc. The value of this variable could be set to any ID of the four buttons in the
member functions (other values are not allowed). In the user-interface update
command message handler of each button, we check if the value of m_nCurrentBtn
is the same with the corresponding button’s ID. If so, we need to set check for
this button, otherwise, we remove its check.

The following lists the steps of how to implement these message handlers:

1. Open file "BarDoc.h", declare a protected member variable m_uCurrentBtn in
class CBarDoc:

class CBarDoc : public CDocument

{

……

protected:

UINT m_uCurrentBtn;

……

};

2. Go to file "BarDoc.cpp", in CBarDoc’s constructor, initialize m_uCurrentBtn red
button’s resource ID:

CBarDoc::CBarDoc()

{

m_uCurrentBtn=ID_BUTTON_RED;

}

This step is necessary because we want one of the buttons to be checked at the
beginning.

3. Implement UPDATE_COMMAND_UI message mapping for four button IDs. This
is almost the same with adding ON_COMMAND macros, which could be done
through using Class Wizard. The only difference between two
implementations is that they select different message types from "Message"
window (see step 5 previous section). Here we should select
"UPDATE_COMMAND_UI" instead of "COMMAND".

1. Implement the four message handlers as follows:

void CBarDoc::OnUpdateButtonBlue(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(pCmdUI->m_nID == m_uCurrentBtn);

}

void CBarDoc::OnUpdateButtonGreen(CCmdUI* pCmdUI)

{

pCmdUI->SetRadio(pCmdUI->m_nID == m_uCurrentBtn);

}

void CBarDoc::OnUpdateButtonRed(CCmdUI* pCmdUI)

{

pCmdUI->SetRadio(pCmdUI->m_nID == m_uCurrentBtn);

}

void CBarDoc::OnUpdateButtonYellow(CCmdUI* pCmdUI)

{

pCmdUI->SetRadio(pCmdUI->m_nID == m_uCurrentBtn);

}

One thing to mention here is that CCmdUI has a public member variable m_nID,
which stores the ID of the control that is about to be updated. We can compare it
with variable CBarDoc::m_uCurrentBtn and set the appropriate state of the control.

With the above implementation, the red button will be checked from the
beginning. We need to change the value of variable m_uCurrentBtn in order to
check another button. This should happen when the user clicks on any of the four
buttons, which will cause the application to receive a WM_COMMAND message. In
the sample, this will cause the message handlers CBarDoc::OnButtonRed(),
CBarDoc::OnButtonBlue()… to be called. Within these member functions, we can
change the value of m_uCurrentBtn to the coresponding command ID in order to
check that button:

void CBarDoc::OnButtonBlue()

{

m_uCurrentBtn=ID_BUTTON_BLUE;

}

void CBarDoc::OnButtonGreen()

{

m_uCurrentBtn=ID_BUTTON_GREEN;

}

void CBarDoc::OnButtonRed()

{

m_uCurrentBtn=ID_BUTTON_RED;

}

void CBarDoc::OnButtonYellow()

{

m_uCurrentBtn=ID_BUTTON_YELLOW;

}

The message box implementation is removed here. By executing the sample
application and clicking on any of the four color buttons, we will see that at any
time, one and only one button will be in the checked state.

1.3. Check Box Implementation

Using Boolean Type Variables

Using the method discussed in section 1.2, it is very easy to implement check-box-
like buttons. We can declare Boolean type variables for each control, and toggle
their values between FALSE and TRUE in the WM_COMMAND message handlers.
Within UPDATE_COMMAND_UI message handlers, we can set check for any button
according to the corresponding value of the Boolean type variable.

Sample 1.3-1\Bar is implemented in this way. In this sample, first variable
m_uCurrentBtn is removed, then WM_COMMAND and UPDATE_COMMAND_UI message
handlers are made empty. Four new Boolean type variables are declared in class
CBarDoc:

class CBarDoc : public CDocument

{

……

protected:

BOOL m_bBtnRed;

BOOL m_bBtnGreen;

BOOL m_bBtnBlue;

BOOL m_bBtnYellow;

……

}

Their values are initialized in the constructor:

CBarDoc::CBarDoc()

{

m_bBtnRed=FALSE;

m_bBtnGreen=FALSE;

m_bBtnBlue=FALSE;

m_bBtnYellow=FALSE;

}

Two types of message handlers (altogether eight member functions) are
rewritten. The following shows the implementation of two member functions for
button ID_BUTTON_RED:

void CBarDoc::OnButtonRed()

{

m_bBtnRed=!m_bBtnRed;

}

void CBarDoc::OnUpdateButtonRed(CCmdUI* pCmdUI)

{

pCmdUI->SetRadio(m_bBtnRed);

}

If we execute the application at this point, we will see that the four color buttons
behave like check boxes.

Function CButton::SetButtonInfo(…)

Although this is a simple way to implement "check box" buttons, sometimes it is
not efficient. Suppose we have ten buttons that we expect to behave like check
boxes, for every button we need to add a Boolean type variable and implement a
UPDATE_COMMAND_UI message handler. Although this is nothing difficult, it is not
the most efficient way of doing it.

Class CToolBar has a member function that can be used to set the button styles.
The function allows us to set button as a push button, separator, check box, or
the start of a group of check boxes. We can also use it to associate an image with
a button contained in the tool bar. The following is the format of this function:

void CToolBar::SetButtonInfo(int nIndex, UINT nID, UINT nStyle, int iImage);

To use this function, we need to provide the information about the button, the
style flags, and the image information. Parameter nIndex indicates which button
we are gong to customize. It is a zero-based index, and button 0 is the left most
button or separator on the tool bar (a separator is also considered a button).
Parameter nID specifies which command ID we want to associate with this button.
Parameter nStyle could be one of the following values, which indicates button’s
style:

Flag Meaning

TBBS_BUTTON push button

TBBS_SEPARATOR separator

TBBS_CHECKBOX check box

TBBS_GROUP start of a group

TBBS_CHECKGROUP start of a check
box group

The last parameter iImage indicates which image will be used to create the bitmap
button. This is also a zero-based number, which indicates the image index of the
tool bar resource. In our case, the tool bar resource contains four images, which
are simply painted red, green, blue and yellow. The images are indexed according
to their sequence, which means the red image is image 0, the green image is
image 1, and so on.

When we create a tool bar resource, it seems that a button’s command ID and the
associated image are fixed from the beginning. Actually both of them can be
modified through calling the above function. We can assign any command ID and
image to any button. Also, we can change a button to a separator. In a normal
application, there is no need to call this function, so the button’s command ID and
image are set according to the tool bar resource.

We have no intention of changing the default arrangement of the buttons. What
we need to do here is modifying the button’s style, which is set to TBBS_BUTTON by
default. Sample 1.3-2\Bar demonstrates how to modify this style. It is based on
sample 1.3-1\Bar.

To implement the new sample, first we need to delete four old
UPDATE_COMMAND_UI message handlers. This can be done through using Class
Wizard, which will delete the declaration of message handlers and the message
mapping macros. We need to remove the implementation of the functions by
ourselves.

We can set the button’s style after the tool bar is created. This can be
implemented in function CMainFrame::OnCreate(…). The following portion of this
function shows what is added in the sample application:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

……

m_wndColorButton.SetButtonInfo(0, ID_BUTTON_RED, TBBS_CHECKBOX, 0);

m_wndColorButton.SetButtonInfo(1, ID_BUTTON_GREEN, TBBS_CHECKBOX, 1);

m_wndColorButton.SetButtonInfo(2, ID_BUTTON_BLUE, TBBS_CHECKBOX, 2);

m_wndColorButton.SetButtonInfo(3, ID_BUTTON_YELLOW, TBBS_CHECKBOX, 3);

……

}

With this modification, all four buttons will behave like check boxes. Similarly, if
we want them to behave like push buttons, we just need to use style flag
TBBS_BUTTON.

The state of a button can be retrieved by another member function of CToolBar. It
lets us find out a button’s command ID, and current state (checked or unchecked,
the associate image):

void CToolBar::GetButtonInfo(int nIndex, UINT& nID, UINT& nStyle, int& iImage);

At any time, we can call this function to obtain the information about buttons. No
additional variable is needed to remember their current states.

The method discussed here can also be used to create radio buttons. In order to
do so, we need to use TBBS_CHECKGROUP instead of TBBS_CHECKBOX flag when
calling function CToolBar::SetButtonInfo(…).

1.4. Message Mapping for a Contiguous Range of Command IDs

Contiguous IDs

In the previous sections, we implemented message handler for every control. If
we want to handle both WM_COMMAND and UPDATE_COMMAND_UI messages, we
need to add two message handlers for each control. Although Class Wizard can
help us with function declaration and adding mapping macros, we still need to
type in code for every member function. If we have 20 buttons on the tool bar,
we may need to implement 40 message handlers. So here the question is, is
there a more efficient way to implement message mapping?

The answer is yes. As long as the button IDs are contiguous, we can write a single
message handler and direct all the messages to it. To implement this, we need to
use two new macros: ON_COMMAND_RANGE and ON_UPDATE_COMMAND_UI_RANGE,
which correspond to ON_COMMAND and ON_UPDATE_COMMAND_UI respectively. The
formats of the two macros are:

ON_COMMAND_RANGE(start ID, end ID, member function name)

ON_UPDATE_COMMAND_UI_RANGE(start ID, end ID, member function name)

The formats of the corresponding member functions are:

afx_msg void FunctionName(UINT uID);

afx_msg void FunctionName(CCmdUI *pCmdUI);

When we create tool bar resource, the control IDs are generated contiguously
according to the sequence of creation. For example, if we first create the blue
button, then the green button, the two IDs will have the following relationship:

ID_BUTTON_GREEN = ID_BUTTON_BLUE+1

Modifying an ID

Sometimes we don’t know if the IDs of the tool bar buttons have contiguous
values, because most of the time we use only symbolic IDs and seldom care
about the actual values of them. If the IDs do not meet our requirement and we
still want to use the above message mapping macros, we need to modify the ID
values by ourselves.

By default, all the resource IDs are defined in file "resource.h". Although we could
open it with a text editor and make changes, there is a better way to do so. First,
an ID value could be viewed in the Developer Studio by executing View |
Resource symbols… command. This command will bring up a dialog box that
contains all the resource IDs used by the application (Figure 1-3).

If we want to make change to any ID value, first we need to highlight that ID,
then click the button labeled "Change…". After that, a "Change Symbol" dialog
box will pop up, if the ID is used for more than one purpose, we need to select
the resource type in "Used by" window (This happens when this ID is used for
both command ID and string ID, in which case the string ID may be used to
implement flyby and tool tip. See Figure 1.9). In our sample, there is only one
type of resource that uses the button IDs, so we do not need to make any choice.
Now click "View Use" button (Figure 1-4), which will bring up "Toolbar Button
Properties" property sheet. Within "General" page, we can change the ID’s value
by typing in a new number in the window labeled "ID". For example, if we want to
change the value of ID_BUTTON_RED to 32770, we just need to type in an equal
sign and a number after the symbolic ID so that this edit window has the
following contents (Figure 1-5):

ID_BUTTON_RED=32770

With this method, we can easily change the values of four resource IDs
(ID_BUTTON_RED, ID_BUTTON_GREEN, ID_BUTTON_BLUE, ID_BUTTON_YELLOW) and make
them contiguous. After this we can map all of them to a single member function
instead of implementing message handlers for each ID.

Unfortunately, Class Wizard doesn’t do range mappings, so we have to implement
it by ourselves. Sample 1.4\Bar demonstrates how to implement this kind of
mapping. It is based upon sample 1.2\Bar, which already contains the default
message mapping macros:

BEGIN_MESSAGE_MAP(CBarDoc, CDocument)

//{{AFX_MSG_MAP(CBarDoc)

ON_COMMAND(ID_BUTTON_BLUE, OnButtonBlue)

ON_COMMAND(ID_BUTTON_GREEN, OnButtonGreen)

ON_COMMAND(ID_BUTTON_RED, OnButtonRed)

ON_COMMAND(ID_BUTTON_YELLOW, OnButtonYellow)

ON_UPDATE_COMMAND_UI(ID_BUTTON_BLUE, OnUpdateButtonBlue)

ON_UPDATE_COMMAND_UI(ID_BUTTON_GREEN, OnUpdateButtonGreen)

ON_UPDATE_COMMAND_UI(ID_BUTTON_RED, OnUpdateButtonRed)

ON_UPDATE_COMMAND_UI(ID_BUTTON_YELLOW, OnUpdateButtonYellow)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

The following lists the necessary steps of changing message mapping from the

original implementation to using contiguous IDs:

1. Delete the above eight message handlers along with the message mapping
macros added by the Class Wizard.

2. Declare two new functions that will be used to process WM_COMMAND and
ON_COMMAND_RANGE messages in class CBarDlg as follows:

class CBarDoc : public CDocument

{

……

protected:

UINT m_uCurrentBtn;

//{{AFX_MSG(CBarDoc)

//}}AFX_MSG

afx_msg void OnButtons(UINT);

afx_msg void OnUpdateButtons(CCmdUI* pCmdUI);

……

}

3. Open file "BarDoc.cpp", find BEGIN_MESSAGE_MAP and END_MESSAGE_MAP
macros of class CBarDoc, add the message mappings as follows:

BEGIN_MESSAGE_MAP(CBarDoc, CDocument)

//{{AFX_MSG_MAP(CBarDoc)

//}}AFX_MSG_MAP

ON_COMMAND_RANGE(ID_BUTTON_RED, ID_BUTTON_YELLOW, OnButtons)

ON_UPDATE_COMMAND_UI_RANGE(ID_BUTTON_RED, ID_BUTTON_YELLOW,
OnUpdateButtons)

END_MESSAGE_MAP()

In the sample application, the values of ID_BUTTON_RED, ID_BUTTON_GREEN,
ID_BUTTON_BLUE, and ID_BUTTON_YELLOW are 32770, 32771, 32772, and 32773
respectively.

4. Implement the two message handlers as follows:

void CBarDoc::OnButtons(UINT uID)

{

m_uCurrentBtn=uID;

}

void CBarDoc::OnUpdateButtons(CCmdUI* pCmdUI)

{

pCmdUI->SetRadio(pCmdUI->m_nID == m_uCurrentBtn);

}

Please compare the above code with the implementation in section 1.2. When we
ask Class Wizard to add message mapping macros, it always adds them between
//{{AFX_MSG comments. Actually, these comments are used by the Class Wizard to
locate macros. To distinguish between the work done by ourselves and that done
by Class Wizard, we can add the statements outside the two comments.

1.5. Fixing the Size of Tool Bar

Remember in section 1.1, when creating the color bar, we used
CBRS_SIZE_DYNAMIC style:

m_wndToolBar.SetBarStyle

(

m_wndToolBar.GetBarStyle() | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC

);

This allows the size of a tool bar to change dynamically. When the bar is floating
or docked to top or bottom border of the client area, the buttons will have a
horizontal layout. If the bar is docked to left or right border, they will have a
vertical layout.

Sometimes we may want to fix the size of the tool bar, and disable the dynamic
layout feature. This can be achieved through specifying CBRS_SIZE_FIXED flag
instead of CBRS_SIZE_DYNAMIC flag when calling function CToolBar::SetBarStyle(…).

By default, the buttons on the tool bar will have a horizontal layout. If we fix the
size of the tool bar, its initial layout will not change throughout application’s
lifetime. This will cause the tool bar to take up too much area when it is docked to
either left or right border of the client area (Figure 1-6).

Instead of fixing the layout this way, we may want to wrap the tool bar from the
second button, so the width and height of the tool bar will be roughly the same at
any time (Figure 1-7).

We can call function CToolBar::SetButtonStyle(…) to implement the wrapping. This
function has been discussed in section 1.3. However, there we didn’t discuss the
flag that can be used to wrap the tool bar from a specific button. This style is
TBBS_WRAPPED, which is not documented in MFC.

Sample 1.5\Bar is based on sample 1.4\Bar that demonstrates this feature. The
following shows the changes made to the original CMainFrame::OnCreate(…)
function:

1. Replace CBRS_SIZE_DYNAMIC with CBRS_SIZE_FIXED when setting the tool bar
style. The following statement shows this change:

m_wndColorButton.SetBarStyle

(

m_wndColorButton.GetBarStyle() | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_FIXED

);

2. Add the following statement after this:

m_wndColorButton.SetButtonStyle

(

1, m_wndColorButton.GetButtonStyle(1) | TBBS_WRAPPED

);

To avoid losing default styles, in the second step, function
CToolBar::GetButtonStyle(…) is first called to retrieve the original styles, which are bit-
wise ORed with the new style before calling function CToolBar::SetButtonStyle(…).

1.6. Adding Combo Box to Tool Bar

By default, a tool bar can have only buttons and separators, and all the buttons
must have the same size. This prevents us from adding other types of controls to
the tool bar. However, by using some special properties of tool bar, we can still
manage to add other types of common controls such as combo box to it.

Remember that all controls are actually different type of windows in essence.
When we design a dialog template and add different common controls, we are
given an impression that these controls are implemented "Statically". In fact, we
can create any type of common controls by calling function CWnd::Create(…) at any
time. This member function is supported by all the classes that are derived from
CWnd. We can use it to create a control and put it anywhere on the tool bar.

Dynamically creating window is rarely used in normal programming because in
this case the programmer has to calculate the size and position of the window
carefully. If we implement this from a dialog template, we can see the visual
effect immediately after a new control is added. If we implement this through
function calling, we have to compile the project before we can see the final result.

However, because tool bar resource does not let us add controls other than
buttons, dynamic method is the only way we can pursue to implement combo box
on the tool bar. The question here is: because the buttons are positioned side by
side, where can we put a combo box that will definitely take up a larger area?

To prevent the controls from interfering with each other, one control should not
overlap another. So first, we must find an inactive area on the tool bar where we
could create the combo box.

On the tool bar, separator is an inactive control. If we click mouse on it, there will
be no response. We already know that we can call function
CToolBar::SetButtonInfo(…) to change a button to a separator. Also, when doing this,
we can specify the width of the separator by using iImage parameter (when we
pass TBBS_SEPARATOR to nStyle parameter, the meaning of iImage parameter
becomes the width of the separator).

On top of the separator, we can create any controls using dynamic method.

Sample 1.6\Bar demonstrates how to add combo box to the tool bar. This sample
is based upon sample 1.4\Bar. In the new sample, the third button (blue button)
is changed to a combo box. The following lists necessary steps of implementing
this:

1. Change the blue button to a separator with a width of 150 after the tool bar
is created. For this purpose, the following statement is added to function
CMainFrame::OnCreate(…):

m_wndColorButton.SetButtonInfo(2, ID_BUTTON_BLUE, TBBS_SEPARATOR, 150);

Here the first parameter indicates that we want to modify the third button. The
second parameter is the blue button’s resource ID. The fourth parameter specifies
the width of the separator. If we compile and execute the sample at this point, we
will see that the blue button does not exist anymore. Instead, a blank space with
width of 150 is added between the third and fourth button. This is the place where
we will create the combo box.

2. Use CComboBox to declare a variable m_wndComboBox in class CMainFrame as
follows:

class CMainFrame : public CFrameWnd

{

……

protected:

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

CToolBar m_wndColorButton;

CComboBox m_wndComboBox;

……

}

3. Use the newly declared variable to call function CComboBox::Create(…) in
CMainFrame::OnCreate(…) after the blue button has been changed to separator.

Function CComboBox::Create(…) has four parameters. We must specify combo box’s
style, size & position, parent window, along with the control ID in order to call this
function. The following is the format of this function:

BOOL CComboBox::Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT
nID);

We can use the first parameter to set the styles of a combo box. A combo box can
have different styles, in our sample, we just want to create a very basic drop
down combo box (For other types of combo boxes, see Chapter 5). The following
code fragment shows how this function is called within CMainFrame:: OnCreate(…):

……

m_wndColorButton.SetButtonInfo(2, ID_BUTTON_BLUE, TBBS_SEPARATOR, 150);

m_wndColorButton.GetItemRect(2, rect);

rect.bottom=rect.top+150;

if(!m_wndComboBox.Create(WS_CHILD | CBS_DROPDOWN |

CBS_AUTOHSCROLL | WS_VSCROLL | CBS_HASSTRINGS,

rect, &m_wndColorButton, ID_BUTTON_BLUE))

{ return -1;

}

m_wndComboBox.ShowWindow(SW_SHOW);

……

Function CToolBar::GetItemRect(…) is called in the second statement of above code
to retrieve the size and position of the separator. After calling this function, the
information is stored in variable rect, which is declared using class CRect.

A drop down combo box contains two controls: an edit box and a list box.
Normally the list box is not shown. When the user clicks on the drop down button
of the combo box, the list box will be shown. Because the size of the combo box
represents its total size when the list box is dropped down (Figure 1-8), we need
to extend the vertical dimension of the separator before using it to set the size of
the combo box. The third statement of above code sets the rectangle’s vertical
size to 150. So when our combo box is dropped down, its width and the height
will be roughly the same.

The fourth statement of above code creates the combo box. Here a lot of styles
are specified, whose meanings are listed below:

Style Flag Meanings

WS_CHILD Indicates that the window (combo box) being created is a
child window. We must specify this flag in order to embed
the combo box in another window

CBS_DROPDOWN The combo box has a list control that can be dropped down
by clicking its drop down button

CBS_AUTOHSCROLL When the user types text into the edit control, the text will
be automatically scrolled to the left if it is too long to be
fully displayed

WS_VSCROLL If too many items are added to the list controls and not all
of them can be displayed at the same time, a vertical scroll
bar will be added to the list control

CBS_HASSTRINGS The items in the list control contains strings

The above styles are the most commonly used ones for a combo box. For details
about this control, please refer to chapter 5.

Because the blue button will not be pressed to execute command anymore, we
use ID_BUTTON_BLUE as the ID of the combo box. Actually, we can specify any
other number so long as it is not used by other controls.

Finally, we must call function CWnd::ShowWindow(…) and pass SW_SHOW flag to it to
show any window created dynamically.

By compiling and executing the sample at this point, we will see that the blue
button has been changed to a combo box.

1.7. Modifying the Default Styles of Tool Bar

A tool bar with combo box is more useful than a normal one contains only bitmap
buttons. However, this feature makes it difficult to implement dynamic layout. If
we execute the sample created in the previous section and dock the tool bar to
the left or right border, we will see that its layout becomes very awkward (Figure
1-9). This is because the layout feature of CTooBar is designed for a tool bar that
contains only buttons with the same size. If we want to change this feature, we
need to override the default layout implementation.

Because the combo box does not fit well when the tool bar has a vertical layout,
we may want to change it back to the blue button when the tool bar is docked to
the left or right border, and change the button back to combo box again when the
bar is floated or docked to the top or bottom border.

This can be easily implemented by calling function CToolBar::SetButtonStyle(…) back
and forth and setting the button’s style according to the current layout. The
problem here is that we must be notified when the tool bar’s layout is about to
change so that we can call the above function before the layout of tool bar
actually changes.

When a tool bar’s layout is about to change, function
CToolBar::CalcDynamicLayout(…)will be called to retrieve the dimension of the tool
bar. The default implementation of this function calculates the tool bar layout
according to the sizes of the controls contained in the tool bar and tries to arrange
them to let the tool bar have a balanced appearance. What we could do here is
changing the combo box back to the button when this function is called for
calculating tool bar’s vertical layout size, and changing the button back to combo
box when it is called for calculating the horizontal layout size.

We could override function CToolBar::CalcDynamicLayout(…)to make this change. The
new function should be implemented as follows:

Overridden CalcDynamicLayout(…)

{

Change the combo box to button or vice versa if necessary;

CToolBar::CalcDynamicLayout(…);

}

The default implementation of this function is called after the button information
is set correctly. By doing this way, the tool bar can always have the best layout
appearance.

We need to know when the tool bar will change from horizontal layout to vertical
layout, or vice versa. This can be judged from the parameters passed to function
CControlBar::CalcDynamicLayout(…). Let’s take a look at the function prototype first:

CSize CControlBar::CalcDynamicLayout(int nLength, DWORD dwMode);

The function has two parameters, the second parameter dwMode indicates what
kind of size is being retrieved. It can be the combination of many flags, in this
section, we need to know only two of them:

Flag Meanings

LM_HORZDOCK The horizontal dock dimension is being
retrieved

LM_VERTDOCK The vertical dock dimension is being
retrieved

What we need to do in the overridden function is examining the LM_HORZDOCK bit
and LM_VERTDOCK bit of dwMode parameter and setting the button information
correspondingly.

To override the member function of CToolBar, we must first derive a new class
from it, then implement a new version of this function in the newly created class.
Sample 1.7\Bar demonstrates how to change the button’s style dynamically, it is
based on sample 1.6\Bar.

First, we need to declare the new class, in the sample, this class is named
CColorBar:

class CColorBar : public CToolBar

{

public:

CColorBar();

BOOL AddComboBox();

BOOL ShowComboBox();

BOOL HideComboBox();

virtual ~CColorBar();

virtual CSize CalcDynamicLayout(int , DWORD);

//{{AFX_VIRTUAL(CColorBar)

//}}AFX_VIRTUAL

protected:

CComboBox m_wndComboBox;

//{{AFX_MSG(CColorBar)

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

Instead of declaring a CComboBox type variable in class CMainFrame, here we
implement the declaration in the derived class. This is a better implementation
because the combo box should be made the child window of the tool bar. By
embedding the variable here, we can make it a protected variable so that it is not
accessible from outside the class.

Three functions are added to change the tool bar’s style. Function
CColorBar::AddComboBox() changes the blue button to a separator and creates the
combo box window:

BOOL CColorBar::AddComboBox()

{

CRect rect;

GetItemRect(2, rect);

rect.bottom=rect.top+150;

if

(

!m_wndComboBox.Create

(

WS_CHILD | CBS_DROPDOWN | CBS_AUTOHSCROLL | WS_VSCROLL | CBS_HASSTRINGS,

rect,

this,

ID_BUTTON_BLUE

)

)return FALSE;

else return TRUE;

}

This is the same with what we did in function CMainFrame::OnCreate(…) in the
previous section. The only difference is that when creating the combo box within
the member function of CMainFrame, the combo box’s parent window needs to be
set to m_wndColorButton. Here, since the combo box variable is embedded in the
parent window’s class, we need to use this pointer to indicate the parent window.

Function CColorBar::ShowComboBox() and CColorBar::HideComboBox() change the
combo box to the button and vice versa. They should be called just before the
default layout is about to be carried out:

BOOL CColorBar::ShowComboBox()

{

CRect rect;

SetButtonInfo(2, ID_BUTTON_BLUE, TBBS_SEPARATOR, 150);

if(m_wndComboBox.m_hWnd != NULL)

{

m_wndComboBox.ShowWindow(SW_SHOW);

}

return TRUE;

}

BOOL CColorBar::HideComboBox()

{

SetButtonInfo(2, ID_BUTTON_BLUE, TBBS_BUTTON, 2);

if(m_wndComboBox.m_hWnd != NULL)m_wndComboBox.ShowWindow(SW_HIDE);

return TRUE;

}

Finally, function CalcDynamicLayout(…) is overridden as follows:

CSize CColorBar::CalcDynamicLayout(int nLength, DWORD dwMode)

{

if(dwMode & LM_HORZDOCK)ShowComboBox();

else HideComboBox();

return CToolBar::CalcDynamicLayout(nLength, dwMode);

}

Before calling the base class version of this function, we examine LM_HORZDOCK bit
of dwMode parameter, if it is set, we call function CColorBar::ShowComboBox() to
change the button to the combo box. If not, we call function
CColorBar::HideComboBox() to change the combo box back to the default button.

It is relatively easy to use this class: we just need to include the header file of
CColorBar class in file "MainFrm.h", then change the prototype of m_wndColorBar
from CToolBar to CColorBar. Because the combo box is embedded in CColorBar class,
we need to remove variable wndComboBox declared in the previous section. In
function CMainFrame::OnCreate(), instead of creating the combo box by ourselves,
we can just call the member function of CColorBar. Here is how the combo box is
created using this new method:

……

m_wndColorButton.AddComboBox();

m_wndColorButton.ShowComboBox();

……

We can see that the original five statements have been reduced to two
statements.

Now we can compile and execute the sample again to see the behavior of the
combo box.

1.8. Dialog Bar

As we have noticed, the limitation of the tool bar is that when we design a tool
bar from resource, only bitmap buttons with the same size can be included. If we
try to modify the size of one bitmap button, the size of all other buttons will be
automatically adjusted. If we want to include controls other than buttons, we
need to write code to add them dynamically.

If we want to implement a control bar that contains other types of common
controls starting from resource editing, we need to use another type of control
bar: dialog bar. In MFC, the class that can be used to implement this type of
control bar is CDialogBar.

Like tool bar, dialog bar is also derived from control bar. Both of them share some
common features. For example, both types of control bars can be either docked or
floated, and they all support tool tip and flyby implementation. The difference
between tool bar and dialog bar is that they are designed to contain different
types of controls: while tool bar is more suitable for containing a row of bitmap
buttons with the same size, dialog bar can be implemented to contain any type of
controls that can be used in a dialog box.

Implementing dialog bar is similar to that of dialog box. The first step is to design
a dialog-template resource. We can add buttons, edit boxes, combo boxes, even
animate controls to a dialog bar.

Dialog bar shares the same type of resource with dialog box. So when starting to
create resource for dialog bar, we first need to add a "dialog" type resource to the
application (In order to do this, we can execute Insert | Resource… command,
then select "Dialog" from the popped up "Insert Resource" dialog box). When
specifying the dialog properties, we must set "child" and "no border" styles. This
can be customized in "Dialog Properties" property sheet (Figure 1-10).

Sample 1.8\Bar demonstrates how to use dialog bar, it is based on sample
1.7\Bar. In this sample, besides the extra tool bar added in the previous sections,
a new dialog bar that contains some common controls is added to the application.
The resource ID of this dialog bar is ID_DIALOG_BAR. It contains two push buttons
(ID_BUTTON_A, ID_BUTTON_B), one edit box (IDC_EDIT) and one combo box
(IDC_COMBO). Also, there are other three static text controls (Figure 1-11).

Adding a dialog bar to the application is similar to that of a tool bar. First we need
to declare a variable in class CMainFrame. Then within function
CMainFrame::OnCreate(…), we can call the member functions of CDialogBar and

CFrameWnd to create the dialog bar, set its styles and dock it.

The following lists necessary steps of adding this dialog bar:

1. Use CDialogBar to declare a new variable m_wndDialogBar in CMainFrame class:

class CMainFrame : public CFrameWnd

{

……

protected:

……

CDialogBar m_wndDialogBar;

……

};

2. In function CMainFrame::Create(…), call CDialogBar::Create(…) to create the
dialog bar window. When doing this, we need to provide the pointer of its
parent window, the dialog template ID, styles and the control ID of the
dialog bar. Here, the control ID could be a different number from its
template ID, so long as it is not being occupied by other resources. The
following code fragment shows how this function is called in the sample:

……

if

(

!m_wndDialogBar.Create

(

this,

IDD_DIALOG_COLORBAR,

CBRS_BOTTOM | CBRS_TOOLTIPS | CBRS_FLYBY,

IDD_DIALOG_COLORBAR

)

)

{

TRACE0("Failed to create toolbar\n");

return -1;

}

……

3. Enable docking by calling function CDialogBar::EnableDocking(…), dock the
dialog bar by calling function CMainFrame::DockControlBar(…):

……

m_wndDialogBar.EnableDocking(CBRS_ALIGN_ANY);

……

DockControlBar(&m_wndDialogBar);

……

Because class CDialogBar is derived from CControlBar, in step 3, when we call
function CDialogBar::EnableDocking(…) to enable docking for the dialog bar, we are
actually calling function CControlBar::EnableDocking(…). This is the same with that of
tool bar. Because of this, both tool bar and dialog bar have the same docking
properties.

By compiling and executing the sample at this point, we can see that the dialog
bar is implemented, which is docked to the bottom border at the beginning. We
can drag the dialog bar and dock it to other borders. As we do this, we may notice
the difference between dialog bar and tool bar: while the size of the tool bar will
be automatically adjusted when it is docked differently (horizontally or vertically),
the size of dialog will not change under any condition. The reason for this is that a
dialog bar usually contains irregular controls, so it is relatively difficult to adjust
its size automatically. By default, dynamic size adjustment is not supported by
class CDialogBar. If we want our dialog bar to support this feature, we need to
override function CDialogBar::CalcDynamicLayout(…).

To prevent a dialog bar from taking up too much area when it is docked to left or
right border, we can put restriction on the dialog bar so that it can only be docked
to top or bottom border. To implement this, we can change the style flag from
CBRS_ALIGN_ANY to CBRS_ALIGN_TOP | CBRS_ALIGN_BOTTOM when calling function
CDialogBar::EnableDocking(…) in step 3 discussed above.

1.9. Resizable Dialog Bar

Because dialog bar can contain more powerful controls than tool bar, we could use
it to implement control bars with more flexibility. To make user-friendly interface,
sometimes we may really want to dynamically change a dialog bar’s size.

Class CControlBar has two member functions dealing with control bar layout:
CControlBar:: CalcFixedLayout(…) and CControlBar::CalcDynamicLayout(…). The first
function returns the fixed size of a control bar, which is determined from the
resource of a control bar. The second function is designed for implementing
dynamic layout, however in class CControlBar, this function does noting but calling

CControlBar::CalcFixedLayout(…). So actually CControlBar does not have dynamic layout
feature.

Class CToolBar overrides function CControlBar::CalcDynamicLayout(…), which adjusts
the size of control bar according to its current docking state and the size of
buttons. Whenever its docking state is changed, this function will be called to
obtain the information of a tool bar before its layout is changed accordingly. With
this implementation, a tool bar can always have a balanced appearance.

Unlike CToolBar, CDialogBar does not override this function, so when the docking
state of a dialog bar is changed, the default CControlBar::CalcDynamicLayout(…) is
called, which of course, will not perform any dynamic layout for the dialog bar. If
we want to add any dynamic layout feature, we must override this member
function.

Sample 1.9\Bar demonstrates how to build a dialog bar that can be resized
dynamically. The application is a standard SDI application generated from
Application Wizard, with four classes named CBarApp, CMainFrame, CBarDoc, and
CBarView. In the sample, a dialog bar with an edit control is added to the
application. This dialog bar will support dynamic layout feature: when we float or
dock it to different borders of the mainframe window, the size of the dialog bar
will change accordingly.

Deriving New Class from CDialogBar

To implement dialog bar, first we need to add a dialog-template resource. In the
sample, the ID of the new resource is IDD_DIALOGBAR, which contains an edit box.
The ID of this edit box is IDC_EDIT, it supports multiple-line editing. To enable this
style, first we can open "Edit Properties" property sheet of the edit control (To
invoke this property sheet, when editing the dialog template, we can double click
on the edit control or right click on it and move to "Properties" menu item), then
we need to click "Styles" tab and check "Multiline" check box.

To override the default function, first we need to derive a new class from
CDialogBar. The following code fragment shows the derived class MCDialogBar, which
resides in file "MDlgBar.h":

class MCDialogBar : public CDialogBar

{

public:

MCDialogBar();

//{{AFX_DATA(MCDialogBar)

//}}AFX_DATA

virtual CSize CalcDynamicLayout(int, DWORD);

//{{AFX_VIRTUAL(MCDialogBar)

//}}AFX_VIRTUAL

protected:

//{{AFX_MSG(MCDialogBar)

afx_msg void OnSize(UINT nType, int cx, int cy);

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

Besides constructor, the only things included in this class are two functions. As we
already know, MCDialogBar::CalcDynamicLayout(…) will be used to support dynamic
layout. Another afx_msg type function MCDialogBar::OnSize(…) is a message handler,
which will be used to resize the edit control contained in the dialog bar. By doing
this, we can see that whenever the size of the dialog bar is adjusted, the size of
the edit box will also change accordingly. This will let the edit box fit well within
the dialog bar.

The new class can be added by opening new files (".h" and ".cpp" files) and typing
in the new class and function implementations. Then we can execute Project |
Add To Project | Files… command to add the newly created files to the project.
However, if we do so, we can not use Class Wizard to add member variables and
functions to the class. In this case, we need to implement message mapping
manually. If this is our choice, we must make sure that DECLARE_MESSAGE_MAP()
macro is included in the class, and BEGIN_MESSAGE_MAP, END_MESSAGE_MAP macros
are included in the implementation file (".cpp" file) so that the class will support
message mapping.

We can also use Class Wizard to add new class. In order to do this, after invoking
the Class Wizard, we can click button labeled "Add Class…" then select "New…"
from the popup menu. This will invoke a dialog box that lets us add a new class to
the project. We can type in the new class name, select the header and
implementation file names, and designate base class name. Unfortunately,
CDialogBar is not in the list of base classes. A workaround is that we can select
CDialog as the base class, after the class is generated, delete the unnecessary
functions, and change all CDialog keywords to CDialogBar in both header and

implementation files.

Resizing Edit Control

The edit control should be resized whenever the size of its parent window
changes. In order to do this, we can trap WM_SIZE message, which is sent to a
window when its size is about to change. We need to declare an afx_msg type
member function as the message handler, and implement the message mapping
using ON_WM_SIZE macro. The message handler of WM_SIZE should have the
following format:

afx_msg void OnSize(UINT nType, int cx, int cy);

Here nType indicates how the window’s size will be changed (is it maximized,
minimized…), cx and cy indicate the new window size.

It is not very difficult to add message mapping macro, we can either add it
manually, or ask Class Wizard to do it for us:

BEGIN_MESSAGE_MAP(MCDialogBar, CDialogBar)

//{{AFX_MSG_MAP(MCDialogBar)

ON_WM_SIZE()

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

Please note that we do not need to specify function name when using macro
ON_WM_SIZE. Instead, we must use OnSize to name the message handler of
WM_SIZE.

To change a window’s size, we can call function CWnd::MoveWindow(…):

void CWnd::MoveWindow(int x, int y, int nWidth, int nHeight, BOOL bRepaint=TRUE);

We need to provide new position and size in order to call this function. Because
the function is a member of CWnd, we need to first obtain a pointer to the edit
window then use it to call this function.

For controls contained in a dialog box, their window pointers can be obtained by
calling function CWnd::GetDlgItem(…). This function requires a valid control ID:

CWnd *CWnd::GetDlgItem(int nID);

The function returns a CWnd type pointer. With this pointer, we can call any
member functions of CWnd to retrieve its information or change the properties of
the control.

Because we want to set the edit control’s size according to the parent window’s
size (dialog bar), we need to find a way of retrieving a window’s dimension. This
can be implemented by calling another member function of CWnd:

void CWnd::GetClientRect(LPRECT lpRect);

It is very easy to use this function. We can just declare a CRect type variable, and
pass its pointer to the above function when calling it. After this, the position and
size of the window will be stored in the variable.

The following shows how message WM_SIZE is handled in the sample:

void MCDialogBar::OnSize(UINT nType, int cx, int cy)

{

CWnd *ptrWnd;

CRect rectWnd;

CDialogBar::OnSize(nType, cx, cy);

GetClientRect(rectWnd);

ptrWnd=GetDlgItem(IDC_EDIT);

if(ptrWnd != NULL)

{

ptrWnd->MoveWindow

(

rectWnd.left+15,

rectWnd.top+15,

rectWnd.Width()-30,

rectWnd.Height()-30

);

}

}

We can not use parameter cx and cy to resize the edit control directly because
after the dialog bar gets this information, its layout may change again. The
ultimate dimension of the dialog bar depends on both cx, cy and the layout
algorithm. So before adjusting the size of edit control, we have to call
CDialogBar::OnSize(…) first to let the dialog bar adjust its own size, then call
CWnd::GetClientRect(…) to retrieve the final dimension of the dialog bar.

The rest part of this function can be easily understood: we first obtain a window
pointer to the edit control and store it in pointer ptrWnd, then use it to call function
CWnd::MoveWindow(…) to resize the edit control.

Dynamic Layout

Now we need to implement function MCDialogBar::CalcDynamicLayout(…). Like what
we did in section 1.7, here we need to return a custom layout size when the
function is called for retrieving either horizontal or vertical docking size. The
following is our layout algorithm: when the bar is docked horizontally, we set its
width to the horizontal size of the mainframe window’s client area, and set its
height to the dialog bar’s floating vertical size; when it is docked vertically, we set
its height to the vertical size of the mainframe window’s client area, and set its
width to the dialog bar’s floating horizontal size.

Parameter dwMode of this function is used to tell what types of dimension is be
inquired. If either LM_VERTDOCK or LM_HORZDOCK bit is set, we need to return a
custom docking size. In this case, we can use another bit LM_HORZ to check if the
dialog bar is docked horizontally or vertically. If this bit is set, the horizontal
docking size is being inquired, otherwise the vertically docking size is being
inquired.

The floating size can be obtained from a public variable: CDialogBar::m_sizeDefault.
By default, this variable is initialized to the dialog template size, and is updated
when the user changes the size of the dialog bar when it is floating. So this
variable always represents the floating size of the dialog bar.

The following is the implementation of this function:

CSize MCDialogBar::CalcDynamicLayout(int nLength, DWORD dwMode)

{

CSize size;

CMainFrame *ptrWnd;

CRect rect;

ptrWnd=(CMainFrame *)(AfxGetApp()->m_pMainWnd);

ptrWnd->GetClientRect(rect);

if((dwMode & LM_VERTDOCK) || (dwMode & LM_HORZDOCK))

{

size.cx=(dwMode & LM_HORZ) ? rect.Width():m_sizeDefault.cx;

size.cy=(dwMode & LM_HORZ) ? m_sizeDefault.cy:rect.Height();

return size;

}

return CDialogBar::CalcDynamicLayout(nLength, dwMode);

}

First, we obtain the dimension of mainframe window’s client area. For this
purpose, first a window pointer to the mainframe window is obtained, then
function CMainFrame::GetClientRect(…) is called to retrieve its dimension. Here the
pointer to the mainframe window is obtained from a public member variable of
class CWinApp. In MFC, every application has a CWinApp derived class, which
contains a pointer m_pMainWnd pointing to the mainframe window. For any
application, the pointer to the CWinApp object can be obtained anywhere in the
program by calling function AfxGetApp(). Using this method, we can easily find the
mainframe window of any MFC application.

Because the application supports status bar and tool bar, part of its client area
may be covered by the control bar. So we need to deduct the covered area when
calculating the dimension of the client area. For this purpose, in CMainFrame,
function CWnd::GetClientRect(…) is overridden. Within the overridden function, the
client area is adjusted if either the status bar or the tool bar is present:

void CMainFrame::GetClientRect(LPRECT lpRect)

{

CRect rect;

CFrameWnd::GetClientRect(lpRect);

if(m_wndToolBar.IsWindowVisible())

{

m_wndToolBar.GetClientRect(rect);

lpRect->bottom-=rect.Height();

}

if(m_wndStatusBar.IsWindowVisible())

{

m_wndStatusBar.GetClientRect(rect);

lpRect->bottom-=rect.Height();

}

}

Now back to MCDialogBar::CalcDynamicLayout(…) implementation. After obtaining the
size of mainframe window’s client area, we examine LM_VERTDOCK and
LM_HORZDOCK bits of dwMode parameter to see if the docking size is being inquired.
If so, we further examine LM_HORZ bit to see if we should return horizontally
docked size or vertically docked size. We return different sizes for different cases.
For all other conditions, we just return the default implementation of the base
class.

Using the New Class

To use this class, first we need to declare a MCDialogBar type variable in class
CMainFrame. We also need to make sure that the header file of this class is
included. In the sample application, this new variable is m_wndDialogBar. Then, as
we have experienced many times, we need to create the window of the dialog bar
in function CMainFrame::OnCreate(…). When doing this, we need to specify
CBRS_SIZE_DYNAMIC flag in order to let the dialog bar be resized dynamically. Then
we can call CDialogBar::EnableDocking(…), CDialogBar::SetBarStyle(…) and
CMainFrame::DockControlBar(…) to set styles and implement docking.

Now we can compile and execute the new project. Originally, the dialog bar is
docked at the bottom border of the frame window. We may drag and dock it to

any other border, or make it floating. As we do this, the dimension of the dialog
bar will be adjusted automatically to suit different docking styles. Also, the edit
control contained in the dialog bar will be resized dynamically according to the
change on the dialog bar.

1.10. Adding Flyby and Tool Tip

Flyby and tool tip are two very nice features that can be added to both tool bar
and dialog bar. If we enable these features, when the user moves mouse cursor
over a control contained in tool bar or dialog bar and stay there for a while, a
describing text about this control will appear on the status bar (It is called Flyby).
At the same time, a small window with a short description will pop up (It is called
Tool Tip. See Figure 1-12 for two types of controls).

Both features can be enabled by calling function CControlBar::SetBarStyle(…) using
the corresponding flags. To enable tool tip, we need to set CBRS_TOOLTIP flag bit,
to enable flyby, we need to set CBRS_FLYBY flag bit. Actually, in the previous
sections, whenever we create a tool bar or dialog bar, the two flags are always
set.

Just setting the above flags can not activate the tool tip and flyby. We need to
provide the text that will be used by tool tip and flyby. The text string must be
implemented as application resources, and the ID of the string must be the same
with the command ID of the control. For example, if we want to add flyby and tool
tip for button ID_BUTTON_RED, we must create a string resource using
ID_BUTTON_RED as its ID. This string will be used for both flyby and tool tip
implementation. Within the string, the text is separated into two parts by an ‘\n’
character, with the sub-string before ‘\n’ used for flyby, and the sub-string after
‘\n’ used for tool tip. For example, if we want the flyby and tool tips for the red
button to be "This is the red button" and "Red Button" respectively, the resource

string should be "This is the red button\nRed Button". If we do not provide a
string resource for this command ID, the flyby and the tool tip will not be
displayed even we enable CBRS_TOOLTIP and CBRS_FLYBY flags. If string resource
does not have a second sub-string (In this case, there is no ‘\n’ character
contained in the string), the whole string will be used for flyby, and no tool tip will
be implemented.

Adding this string for tool bar buttons is very easy. By opening the property sheet
"Toolbar Button Properties", we will find an edit box labeled "Prompt". Inputting a
string into this edit box will add the string resource automatically (Figure 1-13).

For dialog bar, we don’t have the place to input this string in the property sheet.
So we need to edit string resource directly. This can also be implemented very
easily. In the Developer Studio, if we execute command Insert | Resource…(or
press CTRL+R keys), an "Insert Resource" dialog box will pop up. To add a string
resource, we need to highlight node "String Table" and press "New" button. After
this, a new window with the string table will pop up. By scrolling to the bottom of
the window and double clicking an empty entry, a "String Properties" property
sheet will pop up, which can be used to add a new string resource (Figure 1-14).

Sample 1.10\Bar demonstrates how to implement flybys and tool tips. It is based
on sample 1.8\Bar. Actually, the only difference between the two projects is that
some new string resources are added to sample 1.10\Bar. In sample 1.10\Bar,
following string resources are added:

String ID String Contents

IDC_COMBO This is combo box\nCombo Box

IDC_EDIT This is edit box\nEdit Box

IDC_BUTTONA This is button A\nButton A

IDC_BUTTONB This is button B\nButton B

ID_BUTTON_RED This is the red button\nRed Button

ID_BUTTON_GREEN This is the green button\nGreen
Button

ID_BUTTON_BLUE This is the blue button\nBlue Button

ID_BUTTON_YELLOW This is the yellow button\nYellow
Button

After executing this sample, we can put the mouse cursor over the controls
contained in the tool bar or dialog bar. By doing this, the flyby and tool tip will
pop up after the cursor stays there for a short while.

1.11. Toggling Control Bars On/Off

Compared to the default tool bar (IDR_MAINFRAME) created by the Application
Wizard, our custom control bar can not be turned on and off freely. Although we
can float it then click the "C " button located at the top-right corner of the window
to dismiss it, once we do this, there is no way to get it back. The default tool bar
(also the status bar) has a much better feature: there is a corresponding
command in the mainframe menu, when the tool bar is off, we could execute
command View | Toolbar to turn it on.

When a control bar is turned off, its window actually becomes hidden instead of
being destroyed. Thus when we turn it on again, the control bar can still retain its
old states (Its original size, position, and docking state will not change). To turn
on or off a control bar, we can call function CFrameWnd:: ShowControlBar(…), which
has the following format:

void CFrameWnd::ShowControlBar(CControlBar* pBar, BOOL bShow, BOOL bDelay);

This function has three parameters: the first one is a pointer to the control bar
that we want to turn on or off. The second is a Boolean type variable. If it is
TRUE, the control bar will be turned on; if it is FALSE, the control bar will be

turned off. The third parameter is also Boolean type, it specifies if this action
should be taken immediately.

Because we need to know the current state of the control bar (on or off) to
determine whether we should hide or show it, we need to call another member
function of CWnd to see if the control bar is currently hidden:

BOOL CWnd::IsWindowVisible();

This function returns a TRUE or FALSE value, from which we know the control
bar’s current state.

Sample 1.11\Bar supports this new feature, it is based on sample 1.10\Bar. For
both tool bar and dialog bar, a new command is added to the main menu, which
can be used to toggle the control bar between on and off state.

The following shows necessary steps for implementing the new commands:

1. Add two menu items View | Color Bar and View | Dialog Bar to the
mainframe menu IDR_MAINFRAME, whose IDs are ID_VIEW_COLORBAR and
ID_VIEW_DIALOGBAR respectively.

2. Use Class Wizard to add WM_COMMAND and UPDATE_COMMAND_UI type
message handlers for the above IDs in class CMainFrame. The newly added
functions are CMainFrame::OnViewColorBar(), CMainFrame:: OnViewDialogBar(),
CMainFrame::OnUpdateViewColorBar(…) and CMainFrame::
OnUpdateViewDialogBar(…).

3. Implement four WM_COMMAND type message handlers. The function used to
handle WM_COMMAND message for command ID_VIEW_COLORBAR is
implemented as follows:

void CMainFrame::OnViewColorBar()

{

BOOL bShow;

bShow=m_wndColorButton.IsWindowVisible() ? FALSE:TRUE;

ShowControlBar(&m_wndColorButton, bShow, FALSE);

}

To indicate the status of control bars, it is desirable to check the corresponding
menu item when the control bar is available, and remove the check when it

becomes hidden. This is exactly the same with the behavior of the default tool bar
IDR_MAINFRAME. In the sample, the menu item states are handled by trapping
message UPDATE_COMMAND_UI and the check is set or removed by calling function
CCmdUI::SetCheck(…). The following is the implementation of one of the above
message handlers (see Chapter 2 for more about menu customization):

void CMainFrame::OnUpdateViewColorBar(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(m_wndColorButton.IsWindowVisible());

}

It is exactly the same with setting or removing check for a tool bar button.

With the above implementations, the application can be executed again. We can
dismiss the control bar either by executing menu command or by clicking "X"
button located at the upper-right corner of the control bar when it is floating. In
both cases, the control bar can be turned on again by executing corresponding
menu command. We can also dock or float the control bar and turn it off, and see
if the original state will remain unchanged after it is turned on later.

Summary:
1. To add an extra tool bar, first we need to add a tool bar resource, then

declare a CToolBar type variable in CMainFrame class. Within function
CMainFrame::OnCreate(…), we can call the member functions of CToolBar and
CMainFrame to create the tool bar window and set docking styles.

2. The dialog bar can be added in the same way, however, we need to use
dialog-template resource and class CDialogBar to implement it.

3. We can trap WM_COMMAND message for executing command and trap
UPDATE_COMMAND_UI for updating button state. Use ON_COMMAND and
ON_UPDATE_COMMAND_UI macros to implement message mapping.

4. We can use ON_COMMAND_RANGE and ON_UPDATE_COMMAND_UI_RANGE macros
to map a contiguous range of command IDs to one member function.

5. When the size of a tool bar is fixed, we can set TBBS_WRAPPED flag for a
button to let the tool bar wrap after that button.

6. To customize the dynamic layout feature of tool bar and dialog bar, we need
to override function CalcDynamicLayout(…).

7. To add a combo box to a tool bar, first we need to set a button to separator
with specified width, then we need to create the combo box dynamically.

8. Flyby and tool tip can be activated by setting CBRS_TOOLTIP and CBRS_FLYBY
flags then preparing a string resource using the exact same ID with the

control.
9. To toggle control bar on and off, we can call function

CFrameWnd::ShowControlBar(). We need to use function CWnd::IsWindowVisible()
to check if the control bar is currently available.

BACK TO INDEX

Chapter 2 Menu

Menu is very important for all types of applications, it provides a primary way of
letting user execute application commands. If we create applications using
Application Wizard, mainframe menus will be implemented automatically for all
SDI and MDI applications. For dialog-based applications, system menus will also
be implemented, which can be used to execute system commands (Move the
application window, resize it, minimize, maximize and close the application).
Some user-friendly applications also include right-click pop up menus.

This chapter discusses in-depth topics on using and customizing menus, which
include: how to customize the behavior of standard menus, how to make change
to standard menu interface, how to implement owner-draw menu, how to create
right-click menu, how to customize the system menu and implement message
mapping for system menu items.

2.1 Message WM_COMMAND and UPDATE_COMMAND_UI

When creating an SDI application using Application Wizard, we will have a
default menu added to the application. This menu has four sub-menus: File,
Edit, View and Help, which contain the most commonly used commands for a
typical application. At the beginning some of these commands are functional
(such as View | Tool bar and File | Exit) but some are disabled (such as Edit |
Copy). We have to add our own code in order to make them usable.

To activate a command, we need to add message handlers for it. For a general
Windows(application, we need to pay attention to two messages:
WM_COMMAND and UPDATE_COMMOND_UI.

Sample 2.1\Menu demonstrates how to handle two types of messages through
simulating a cut, copy and paste procedure. Here, we make use of three default
menu commands added by the Application Wizard: View | Cut, View | Copy,
View | Paste. The application will enable View | Paste menu item only after View
| Cut or View | Copy has been executed at least once (For demonstration
purpose, command View | Copy and View | Cut do not actually copy data to the
clipboard). Also, item View | Paste will be changed dynamically indicating if the

newly copied data has been pasted.

The sample is started by generating standard SDI application using Application
Wizard. The project is named "Menu" and four standard classes are CMenuApp,
CMainFrame, CMenuDoc, and CMenuView respectively. All other settings are
default. After compiling and executing the skeleton application, we will see a
standard SDI application with a menu implemented in the mainframe window.
By examining this menu, we can find that it has the following structure:

File

New...

Open...

Save...

Save As...

Separator

Recent File

Separator

Exit

Edit

Undo

Separator

Cut

Copy

Paste

View

Toolbar

Status Bar

Help

About...

By clicking "Edit" sub-menu, we will see that all the commands contained there
are disabled. If we edit the menu resource and add additional commands, they
will not become functional until we add message handlers for them.

Handling WM_COMMAND Command

The first step of enabling a menu command is to implement a WM_COMMAND
message handler for it. This is exactly the same with what we did for a tool bar
command in Chapter 1. Just as buttons contained in a tool bar, each menu
command has a unique command ID. When the user clicks the menu item, the
system detects the mouse events and sends a WM_COMMAND message to the
application, with the command ID passed through WPARAM parameter. In MFC,
as the application receives this message, a corresponding message handler will
be called to execute the command. Again, the message mapping should be
implemented by using ON_COMMAND macro.

The message mapping could be implemented either manually or through using
Class Wizard. This procedure is also the same with adding message handlers for
tool bar buttons as we did in Chapter 1. If we use Class Wizard, after invoking it,
first we need to go to "Messages Maps" page. Then we need to select a class
name from "Class name" combo box (In the sample, all the commands are
handled in the document class, so we need to select "CMenuDoc" if it is not
selected). Next, we need to find the command ID to which we want to add
handlers in "Object IDs" window, and highlight "Command" item in "Messages"
window. Now click "Add Function" button and confirm the member function
name. After this, a new member function and the corresponding message
mapping macros will be added to the application.

There is no difference between adding message handlers manually and adding
them using Class Wizard. However, doing it manually will let us understand
message mapping mechanism, which will make it easier for us to further
customize the menu behavior.

In the sample application we will implement commands View | Cut, View | Copy
and View |Paste. So at first WM_COMMAND type message handlers need to be
added for commands ID_EDIT_COPY, ID_EDIT_CUT and ID_EDIT_PASTE in
CMenuDoc class. The following shows the steps of adding them through using
Class Wizard:

1) In file "MenuDoc.h", three member functions are declared in the class, they

will be used to handle ID_EDIT_COPY, ID_EDIT_CUT and ID_EDIT_PASTE
command execution:

class CMenuDoc : public CDocument

{

......

//{{AFX_MSG(CMenuDoc)

afx_msg void OnEditCopy();

afx_msg void OnEditCut();

afx_msg void OnEditPaste();

//}}AFX_MSG

......

}

2) In file "MenuDoc.cpp", message mapping macros are added to associate the
member functions with the command IDs:

BEGIN_MESSAGE_MAP(CMenuDoc, CDocument)

//{{AFX_MSG_MAP(CMenuDoc)

ON_COMMAND(ID_EDIT_COPY, OnEditCopy)

ON_COMMAND(ID_EDIT_CUT, OnEditCut)

ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

3) Three blank message handlers are added in file "MenuDoc.cpp":

void CMenuDoc::OnEditCopy()

{

}

void CMenuDoc::OnEditCut()

{

}

void CMenuDoc::OnEditPaste()

{

}

When first added, these functions are empty. We have to add our own code in
order to support command execution.

By compiling and executing the sample application at this point, we will see that
Edit | Copy, Edit | Cut and Edit | Paste menu items are all enabled. This is
because three blank message handlers have just been added.

Enabling & Disabling a Command

The sample application will not actually cut, copy or paste data. The three
commands will be implemented just to simulate data copy and paste procedure.
Before going on to implement it, we need to make following assumptions.

Suppose the application supports only internal data copy, cut and paste (it does
not accept data from other applications through using system clipboard). Before
command Edit | Copy or Edit | Cut is executed, there should be no data stored in
the "local clipboard". Therefore, if we execute Edit | Paste command at this time,
there will be an error. To avoid this, we need to disable Edit | Paste command
before data has been copied to the clipboard.

The state of menu item can be set thought handling UPDATE_COMMAND_UI
message. The parameter comes along with this message is a pointer to CCmdUI
type object, which can be used to enable or disable a command, set or remove
check for a menu item. Handling this message for menu items is the same with
that of tool bar controls.

So it is easy to find out a mechanism for updating command Edit | Paste: we
need to declare a Boolean type variable in class CMenuDoc and initialize it to

FALSE. We can set this flag to TRUE when Edit | Cut or Edit | Copy command is
executed, and enable Edit | Paste command only if this flag is set.

In the sample application, this Boolean variable is
CMenuDoc::m_bPasteAvailable. The following code fragment shows how it is
declared and initialized in the constructor of class CMenuDoc:

class CMenuDoc : public CDocument

{

......

protected:

BOOL m_bPasteAvailable;

......

}

CMenuDoc::CMenuDoc()

{

m_bPasteAvailable=FALSE;

}

The value of CmenuDoc::m_bPasteAvailable is set to TRUE when user executes
either Edit | Copy or Edit | Cut command:

void CMenuDoc::OnEditCopy()

{

m_bPasteAvailable=TRUE;

}

void CMenuDoc::OnEditCut()

{

m_bPasteAvailable=TRUE;

}

Now we will use CMenuDoc::m_bPasteAvailable to enable Edit | Paste menu item
when it becomes TRUE. In MFC, menu items are updated through handling
UPDATE_COMMAND_UI messages. When the state of a menu command needs to
be updated, UPDATE_COMMAND_UI message will be automatically sent to the
application. If there exists a corresponding message handler, it will be called for
updating the corresponding menu item. Otherwise, the menu item will remain
unchanged.

Adding an UPDATE_COMMAND_UI message handler is the same with adding a
WM_COMMAND message handler. After invoking the Class Wizard, we need to
select the class name, the command ID, and highlight "UPDATE_COMMAND_UI"
instead of "WM_COMMAND" in "Messages" window. Finally, we need to click
button "Add Function".

After adding the message handler for ID_EDIT_PASTE command, we will have a
new member function declared in class CMenuDoc, and a new message mapping
macro added to the class implementation file. In addition, we will have an empty
function that could be modified to implement message handling:

void CMenuDoc::OnUpdateEditPaste(CCmdUI *pCmdUI)

{

}

The only parameter to this function is a pointer to CCmdUI type object. Here,
class CCmdUI has several member functions, which can be used to set the state
of the menu item. To enable or disable the menu item, we can call function
CCmdUI::Enable(...). The function has only one Boolean type parameter, we can
pass TRUE to enable the menu item and pass FALSE to disable it. Because the
state of Edit | Paste command depends upon variable
CMenuDoc::m_bPasteAvailable, we can use it to set the state of menu item:

void CMenuDoc::OnUpdateEditPaste(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_bPasteAvailable);

}

By compiling and executing the sample application at this point, we will see that
Edit | Paste command is disabled at the beginning, and after we execute either
Edit | Cut or Edit | Copy command, it will be enabled.

Changing Menu Text

We will go on to add more features to the mainframe menu. Class CCmdUI has
another useful member function CCmdUI::SetText(...), which allows us to
change the text of a menu item dynamically. By using this function, we can
change the text of Edit | Paste menu item so that it can convey more
information to the user. For example, we could set text to "Do not paste" when
data is not available, and to "Please paste" when data is available. To add this
feature, all we need is to call CCmdUI::SetText(...) in the above message
handler as follows:

void CMenuDoc::OnUpdateEditPaste(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_bPasteAvailable);

pCmdUI->SetText(m_bPasteAvailable ? "Please &paste":"Do not &paste");

}

Checking a Menu Item

Let's further add some more interesting features to the menu commands. With
the current implementation we do not know if the data has been "Pasted" after it
is "cut" or "copied" to the "clipboard". We can indicate the data status by putting
a check mark on the menu item so the user knows if the current "data" in the
"clipboard" has been pasted (after the user executes View | Paste command).
This check will be removed when either "cut" or "copy" command is executed.

Similar to tool bar, we can call function CCmdUI::SetCheck(...) to set check for a
menu item. The difference between the results of this function is the changing
on the interface: while setting check for a button will make it recess, setting
check for a menu item will put a check mark at the left side of the menu item.

We need a new Boolean type variable to indicate the status of "data". In the
sample application, this variable is CMenuDoc::m_bDataPasted, which is
initialized to FALSE in the constructor. The following functions show how its
value is changed under different situations:

void CMenuDoc::OnEditCopy()

{

m_bPasteAvailable=TRUE;

m_bDataPasted=FALSE;

}

void CMenuDoc::OnEditCut()

{

m_bPasteAvailable=TRUE;

m_bDataPasted=FALSE;

}

void CMenuDoc::OnEditPaste()

{

m_bDataPasted=TRUE;

}

In function OnUpdateEditPaste(...), the menu item is checked only when flag
CMenuDoc:: m_bDataPasted is TRUE:

void CMenuDoc::OnUpdateEditPaste(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_bPasteAvailable);

pCmdUI->SetCheck(m_bDataPasted);

pCmdUI->SetText

(

m_bPasteAvailable ?

(

m_bDataPasted ? "Data &pasted":"Please &paste"):

"Do not &paste"

);

}

The text of the menu item is also change to "Data pasted" when the menu item
is checked.

The last thing need to be mentioned here is another member function of class
CCmdUI: CCmdUI:: SetRadio(...). Like CCmdUI::SetCheck(...), this function will
put a check mark on a menu item. The difference between two functions is that
CCmdUI::SetRadio(...) makes menu items behave like radio buttons: when this
function is called to check one item, all other items in the same group will be
unchecked automatically. Calling function CCmdUI::SetCheck(...) does not affect
other menu items.

2.2 Right Click Pop Up Menu

In Windows 95, right-click menu becomes a standard user interface. We can
right click on the desktop, task bar, or other types of windows to bring up a
menu that contains the most commonly used commands. In this section, we will
discuss how to add right-click menu to our application.

Adding Menu Resource

Sample 2.2\Menu demonstrates right-click menu implementation. It is a
standard SDI application generated by Application Wizard with all the default
settings. This is the same with the previous sample. We can also start from
sample 2.1\Menu and add the new features that will be discussed below.

Like tool bar and dialog bar, a menu can be implemented starting from building
menu resource. To add a menu resource, We can execute Insert | Resource
command in Developer Studio, select "menu" resource type from the popped up
dialog box, and click button "New". Now a new menu resource with a default ID
will be added to the application. In the sample, this default ID is changed to
IDR_MENU_POPUP, and a sub-menu with four menu items is created. The newly
created menu items are "Pop Up Item 1", "Pop Up Item 2", "Pop Up Item 3" and
"Pop Up Item 4", whose command IDs are ID__POPUPITEM1, ID__POPUPITEM2,

ID__POPUPITEM3 and ID__POPUPITEM4 respectively (Figure 2-1).

Trapping Right Button Clicking Event

The first step to implement a right-click menu is to detect mouse's right clicking
event, which is a standard Windows(event, and its corresponding message is
WM_RBUTTONDOWN. To trap this message, we need to implement message
handler.

When we click mouse's right button on a window, message WM_RBUTTONDOWN
will be sent to that window. This window could be any type: mainframe window,
client window, dialog box, or even button.

We need to handle this message in the class that implements the window. For
example, if we want to handle right click in a dialog box, we need to add the
message handler in a CDialog derived class, if we want to handle it in the client
window of an SDI application, we need to add the message handler in CView
derived class.

In our sample, right-clicking menu is implemented in the client window. So we
need to trap message WM_RBUTTONDOWN in class CMenuView.

Adding message handler for message WM_RBUTTONDOWN is similar to that of
WM_COMMAND: first we need to declare an afx_msg type member function
OnRButtonDown(...), then use ON_RBUTTONDOWN macro to map the message
to this function. Finally, we need to implement the message handler. Please note
that OnRButtonDow(...) is the standard function name that will be automatically
associated with message WM_RBUTTONDOWN. When using ON_RBUTTONDOWN
macro, we do not need to specify function name.

The above-mentioned procedure can be implemented through using Class
Wizard as follows: after invoking the Class Wizard, select class CMenuView,
which is the class used to implement the client window. There are a lot of virtual
functions and messages listed in the "Messages" window. By scrolling the
vertical scroll bar, it is easy to find message WM_RBUTTONDOWN. Now highligh
this message and click "Add function" button. This will cause a new member
function OnRButtonDown to be added to class CMenuView, and message
mapping macros to be added to the implementation file (See Figure 2-2).

In the sample, the newly added function is CMenuView::OnRButtonDown(...),
which needs to be modified to implement right-click menu. By default, this
function does nothing but calling the message handler implemented by the base
class:

void CMenuView::OnRButtonDown(UINT nFlags, CPoint point)

{

CView::OnRButtonDown(nFlags, point);

}

Using Class CMenu

We need to modify the above function in order to implement right-click pop up
menu. In MFC, there is a class designed for menu implementation: CMenu,
which contains some member functions that allow us to create menu
dynamically, track and update menu items, and destroy the menu.

The first function we will use is CMenu::LoadMenu(...), it allows us to load a
menu resource and use it later. This function has two different versions, one
allows us to load a menu resource with a numerical ID, and the other allows us
to load a resource with a string ID:

BOOL LoadMenu(LPCTSTR lpszResourceName);

BOOL LoadMenu(UINT nIDResource);

In the sample application, the menu resource is stored by a numerical ID
(IDR_MENU_POPUP). We can also assign a string ID to it by inputting a quoted
text in the edit box labeled with "ID".

We need to use CMenu to declare a variable that will be used to load the menu
resource. Normally the right-click menu will be initiated after right-clicking event
has been detected. Then the mouse's activities will be tracked by the menu until
the user executes one of the menu commands or dismisses the menu. Because
all these things can be handled within the message handler, the variable used to
implement menu can be declared as a local variable. In the sample, the menu
resource is loaded as follows:

void CMenuView::OnRButtonDown(UINT nFlags, CPoint point)

{

CMenu menu;

menu.LoadMenu(IDR_MENU_POPUP);

CView::OnRButtonDown(nFlags, point);

}

Generally, one menu contains several sub-menus, and each sub-menu contains
several menu items. For right click menu, only one sub-menu (instead of whole
menu) will be implemented each time the user clicks mouse's right button.
Because of this, in the sample application, menu IDR_MENU_POPUP contains
only one sub-menu. To obtain a pointer to the sub-menu, we can call function
CMenu::GetSubMenu(...), which has the following format:

CMenu *Cmenu::GetSubMenu(int nPos) const;

Parameter nPos indicates which sub-menu we are trying to obtain. In a menu
resource, the left-most sub-menu is indexed 0, next sub-menu indexed 1, and
so on. In the sample application, sub-menu that contains items "Pop Up Item
1"... is located at position 0.

This function returns a CMenu type pointer that could be used to further access
each item contained in the sub-menu. Before the menu is displayed, we may
want to set the state of each menu item: we can enable, disable, set check or
change text for a menu item. Please note that for a right-click menu, we do not
need to handle message UPDATE_COMMAND_UI in order to set the states of
menu items. Instead, there exist two member functions that can be used:

UINT CMenu::EnableMenuItem(UINT nIDEnableItem, UINT nEnable);

UINT CMenu::CheckMenuItem(UINT nIDCheckItem, UINT nCheck);

The above two functions can be used to enable/disable, set/remove check for a
menu item. When calling the two functions, we can reference a menu item by
using either its command ID or its position. Normally we can pass a command ID
to nIDEnableItem or nIDCheckItem parameter. If we want to reference an item
by its position (0 based, for example, in the sample application,
ID__POPUPITEM1's position is 0, and ID__POPUPITEM2's position is 1...), we
need to set MF_BYPOSITION bit of nEnable or nCheck parameter.

The menu can be activated and tracked by calling function
CMenu::TrackPopupMenu(...):

BOOL CMenu::TrackPopupMenu

(

UINT nFlags, int x, int y, CWnd* pWnd, LPCRECT lpRect=NULL

);

This function has 5 parameters. The first parameter nFlags lets us set styles of
the menu (Where should the menu be put, which mouse button will be tracked).
The most commonly used combination is TPM_LEFTALIGN | TPM_RIGHTBUTTON,
which aligns menu's left border according to parameter x, and tracks mouse's
right button activity (because we are implementing a right-click menu). The
second parameter y decides the vertical position of the menu's top border.
Please note that when message WM_RBUTTONDOWN is received, position of
current mouse cursor will be passed to one of the parameters of function
OnRButtonDown(...) as a CPoint type object. To make right-click menu easy to
use, we can pass this position to function CMenu::TrackPopupMenu(...), which
will create a pop up menu at the position of current mouse cursor. The fourth
parameter is a CWnd type pointer, which indicates which window owns the pop
up menu. In the sample, because the menu is implemented in the member
function of class CMenuView, we can use this pointer to indicate the menu
owner. The final parameter discribes a rectangle within which the user can click
the mouse without dismissing the pop up menu. We could set it to NULL, in
which case the menu will be dismissed if the user clicks outside the pop up
menu.

Implementing Right-Click Menu

Now we can implement WM_RBUTTONDOWN message handler, load the menu
resource and create right-click menu in the member function:

void CMenuView::OnRButtonDown(UINT nFlags, CPoint point)

{

CMenu menu;

CMenu *ptrMenu;

menu.LoadMenu(IDR_MENU_POPUP);

ptrMenu=menu.GetSubMenu(0);

ptrMenu->EnableMenuItem(ID__POPUPITEM1, MF_GRAYED);

ptrMenu->EnableMenuItem(ID__POPUPITEM2, MF_ENABLED);

ptrMenu->CheckMenuItem(ID__POPUPITEM3, MF_UNCHECKED);

ptrMenu->CheckMenuItem(ID__POPUPITEM4, MF_CHECKED);

ClientToScreen(&point);

ptrMenu->TrackPopupMenu

(

TPM_LEFTALIGN|TPM_RIGHTBUTTON,

point.x,

point.y,

this,

NULL

);

CView::OnRButtonDown(nFlags, point);

}

After implementing the right-click menu, we still need to call function
CView::OnRButtonDown(...). This is to make sure that the application does not
lose any default property implemented by class CView.

In the above function, before CMenu::TrackPopupMenu(...) is called, function
CWnd::ClientToScreen() is used to convert the coordinates of a point from the
client window to the desktop window (the whole screen). When point parameter
is passed to CMenuView::OnRButtonDown(...), it is assumed to be measured in
the coordinates system of the client window, which means (0, 0) is located at
the upper-left corner of the client window. When we implement a menu, function
CMenu::TrackPopupMenu(...) requires coordinates to be measured in the
desktop window system, which means (0, 0) is located at the upper-left corner
of the screen. Function CWnd::ClientToScreen(...) can convert the coordinates of
a point between the two systems. This function is frequently used when we need
to convert coordinates from one window to another.

By compiling and executing the application at this point, we will see that the
right-click menu is implemented successfully.

Message Mapping for Right-Click Menu

Although the right-click menu is working now, we still can not use it to execute
any command. The reason is simple: we haven't implemented WM_COMMAND
type message handlers for the menu commands yet. For right-click menu, we
cannot add message handlers using Class Wizard, because the command IDs of
the menu items are not listed in "Object IDs" window of the Class Wizard. Thus,
we have to do everything manually. Actually, adding message handlers for right-
click menu items is the same with adding handlers for a normal menu item: we
need to declare afx_msg type functions, use ON_COMMAND macros to do the
message mapping, and implement the member functions. In the sample,
WM_COMMAND type message handler is added for each menu item contained in
the right-click menu. Within each message handler, a message box pops up
indicating which menu item it is.

The following portion of code shows the member functions declared in class
CMenuDoc:

class CMenuDoc : public CDocument

{

......

//{{AFX_MSG(CMenuDoc)

//}}AFX_MSG

afx_msg void OnPopUpItem1();

afx_msg void OnPopUpItem2();

afx_msg void OnPopUpItem3();

afx_msg void OnPopUpItem4();

DECLARE_MESSAGE_MAP()

......

}

Message mapping macros are implemented as follows:

BEGIN_MESSAGE_MAP(CMenuDoc, CDocument)

//{{AFX_MSG_MAP(CMenuDoc)

//}}AFX_MSG_MAP

ON_COMMAND(ID__POPUPITEM1, OnPopUpItem1)

ON_COMMAND(ID__POPUPITEM2, OnPopUpItem2)

ON_COMMAND(ID__POPUPITEM3, OnPopUpItem3)

ON_COMMAND(ID__POPUPITEM4, OnPopUpItem4)

END_MESSAGE_MAP()

Four member functions are implemented as follows:

void CMenuDoc::OnPopUpItem1()

{

AfxMessageBox("Pop up menu item 1");

}

void CMenuDoc::OnPopUpItem2()

{

AfxMessageBox("Pop up menu item 2");

}

void CMenuDoc::OnPopUpItem3()

{

AfxMessageBox("Pop up menu item 3");

}

void CMenuDoc::OnPopUpItem4()

{

AfxMessageBox("Pop up menu item 4");

}

With the above implementation, we are able to execute the commands contained
in the right-click pop up menu.

2.3 Updating Menu Dynamically

Sometimes it is desirable to change the contents of a menu dynamically. For
example, if we create an application that supports many commands, we may
want to organize them into different groups. Sometimes we want to enable a
group of commands, sometimes we want to disable them.

Although we can handle UPDATE_COMMAND_UI message to enable or disable
commands, sometimes it is more desirable if we can remove the whole sub-
menu instead of just graying the menu text. Actually, sub-menu and menu item
can all be modified dynamically: we can either add or delete a sub-menu or
menu item at any time; we can also change the text of a menu item, move a
sub-menu or menu item, or add a separator between two menu items. All these
things can be implemented at run-time.

Menu Struture

The structure of menu --> sub menu --> menu item is like a tree. At the
topmost level (the root), the menu comprises several sub-menus. Each sub-
menu also comprises several items, which could be a normal command or
another sub-menu. For example, in application Explorer (file browser in
Windows95(), its first level menu comprises five sub-menus: File, Edit, View,
Tool, and Help. If we examine File sub-menu, we will see that it comprises eight
items: New, separator, Create Shortcut, Delete, Rename, Properties, separator
and Close. Here, item New is another sub-menu, which comprises several other
menu items. This kind of structure can continue. As long as our program needs,
we can organize our menu into many different levels.

In MFC, class CMenu should be used this way. With a CMenu type pointer to a
menu object, we have the access to only the menu items at certain level. If we
want to access a menu item at a lower level, we first need to access the sub-
menu that contains the desired menu item.

This can be explained by the previous "Explorer" example: suppose we have a
CMenu type pointer to the main menu, we can use it to access the first level
menu items: File, Edit, View, Tool, and Help. This means we can use the pointer
to disable, enable or set text for any of the above items, but we can not use it to

make change to the items belonging to other levels, for example, New item
under File sub-menu. To access this item, we need to first obtain a CMenu type
pointer to File sub-menu, then use it to modify item File | New.

Inserting and Removing Menu Item

Class CMenu has certain member functions that allow us to insert or delete a
menu item dynamically. We can add either a menu item (including separator), or
a whole sub-menu. When we remove a sub-menu, all the lower level items and
sub-menus will be removed.

The function that can be used to insert menu items or sub-menus is
CMenu::InsertMenu(...), it has the following format:

BOOL CMenu::InsertMenu

(

UINT nPosition, UINT nFlags, UINT nIDNewItem=0, LPCTSTR
lpszNewItem=NULL

);

This function has five parameters. The first parameter, nPosition, indicates
where we want our new menu item to be inserted. It could be an absolute
position, 0, 1, 2..., or a command ID of the menu item. In the former case,
MF_BYPOSITION bit of second parameter nFlags must be set. In the latter case,
MF_BYCOMMAND bit must be set. Since not all menu items have a command ID
(such as a separator), using position to indicate a menu item is sometimes
necessary.

Generally, we can insert three types of items: a menu item with specified
command ID, a separator or a sub-menu. To insert a menu item, we need to
pass the command ID to nIDNewItem parameter, then use the final parameter
lpszNewItem to specify the text of this menu item. If we want to insert a
separator, we must set MF_SEPARATOR bit of parameter nFlag. In this case the
rest two parameters nIDNewItem and lpszNewItem will be ignored, so we can
pass any value to them. If we want to insert a sub-menu, we must pass a menu
handle to parameter nIDNewItem, and use lpszNewItem to set the text for the
menu item.

In Windows(programming, handle is a very important concept. Many types of
resources are managed through using handles. A handle is just a unique number
that can be used to reference a block of memory. After an object (program,
resource, dynamically allocated memory block, etc.) is loaded into the memory,

it will be assigned a unique handle that can be used to access this object. As a
programmer, we don't need to know the exact value of a handle. When
accessing an object, instead of using handle's absolute value, we can just use
the variable that stores the handle.

Different handles have different prototypes, for a menu object, its prototype is
HMENU.

In MFC, this is further simplified. When we call a member function to load an
object into the memory, the handle will be automatically saved to a member
variable. Later if we need this handle, we can just call a member function to
retrieve it.

In the case of class CMenu, after calling function CMenu::LoadMenu(...), we can
obtain the handle of the menu resource by calling function
CMenu::GetSafeHmenu().

For example, in sample 2.2\Menu, after menu resource IDR_MENU_POUP is
loaded into the memory, we could obtain the handle of its first sub-menu and
store it to an HMENU type variable as follows:

CMenu menu;

CMenu *ptrMenu;

HMENU hMenu;

menu.LoadMenu(IDR_MENU_POPUP);

ptrMenu=menu.GetSubMenu(0);

hMenu=ptrMenu->GetSafeHmenu();

To remove a menu item, we need to use another member function of CMenu:

BOOL CMenu::RemoveMenu(UINT nPosition, UINT nFlags);

The meanings of nPosition and nFlags parameters are similar to those of function
CMenu:: InsertMenu(...).

There is another similar function: CMenu::DeleteMenu(...), which can also
remove a menu item or sub- menu. However, if we use this function to delete a
sub-menu, the menu resource will be released from the memory. In this case, if
we wand to use the sub-menu again, we need to reload the menu resource.

Sample Implementation

Sample 2.3\Menu demonstrates how to add and delete menu items dynamically.
It is a standard SDI application generated by Application Wizard, with all the
default settings. In this sample, there are two commands Edit | Insert Dynamic
Menu and Edit | Delete Dynamic Menu. If we execute the first command, a new
sub-menu will be added between File and Edit sub-menus. We can use the
second command to remove this dynamically added sub-menu.

The first step is to add two menu items to IDR_MAINFRAME menu resource. In
the sample, two commands are added to Edit sub-menu, their description text
are "Insert Dynamic Menu" and "Delete Dynamic Menu" respectively, and their
command IDs are ID_EDIT_INSERTDYNAMICMENU and
ID_EDIT_DELETEDYNAMICMENU. Both of them have WM_COMMAND and
UPDATE_COMMAND_UI message handlers in class CMenuDoc, whose function
names are OnEditInsertDynamicMenu, OnUpdateEditInsertDynamicMenu,
OnEditDeleteDynamicMenu and OnUpdateEditDeleteDynamicMenu.

Because we want to disable command ID_EDIT_DELETEDYNAMICMENU and
enable command ID_EDIT_INSERTDYNAMICMENU before the sub-menu is
inserted, and reverse this after the menu is inserted, another Boolean type
variable m_bSubMenuOn is declared in class CMenuDoc, which will be used to
indicate the state of the inserted menu. It is initialized to FALSE in the
constructor.

Preparing the menu resource that will be used to implement dynamic sub-menu
is the same with what we did in the previous sample. Here a resource
IDR_MENU_POPUP is added to the application, whose content is the same with
the resource created in sample 2.2\Menu.

In this case, we could not use a local variable to load the menu, because once
the menu is inserted, it may exist for a while before the user removes it. If we
still use a local variable, it will go out of scope after the messagae hander
returns. In the sample, a CMenu type variable is declared in class CMenuDoc,
which is used to load the menu resource in the constructor.

The following shows the modified class CMenuDoc:

class CMenuDoc : public CDocument

{

protected: // create from serialization only

CMenu m_menuSub;

BOOL m_bSubMenuOn;

......

protected:

//{{AFX_MSG(CMenuDoc)

afx_msg void OnEditInsertDynamicMenu();

afx_msg void OnUpdateEditInsertDynamicMenu(CCmdUI* pCmdUI);

afx_msg void OnEditDeleteDynamicMenu();

afx_msg void OnUpdateEditDeleteDynamicMenu(CCmdUI* pCmdUI);

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

};

The following is the constructor within which the menu resource is loaded and
m_bSubMenuOn is initialized:

CMenuDoc::CMenuDoc()

{

m_menuSub.LoadMenu(IDR_MENU_POPUP);

m_bSubMenuOn=FALSE;

}

The following shows two UPDATE_COMMAND_UI message handlers where two
menu commands are enabled or disabled:

void CMenuDoc::OnUpdateEditInsertDynamicMenu(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_bSubMenuOn == FALSE);

}

void CMenuDoc::OnUpdateEditDeleteDynamicMenu(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_bSubMenuOn == TRUE);

}

At last, we must implement two WM_COMMAND message handlers. First, we
need to find a way of accessing mainframe menu IDR_MAINFRAME of the
application. In MFC, a menu associated with a window can be accessed by calling
function CWnd::GetMenu(), which will return a CMenu type pointer. Once we get
this pointer, we can use it to access any of its sub-menus.

The mainframe window pointer can be obtained by calling function
AfxGetMainWnd() anywhere in the program. An alternate way is to call
AfxGetApp() to obtain a CWinApp type pointer, then access its public member
m_pMainWnd. We could use CMenu type pointer to insert or remove a sub-menu
dynamically.

The following shows two message handlers that are used to insert or remove the
sub-menu:

void CMenuDoc::OnEditInsertDynamicMenu()

{

CMenu *pTopMenu=AfxGetMainWnd()->GetMenu();

CMenu *ptrMenu=m_menuSub.GetSubMenu(0);

pTopMenu->InsertMenu

(

1, MF_BYPOSITION | MF_POPUP, (UINT)ptrMenu->GetSafeHmenu(), "&Dynamic
Menu"

);

AfxGetMainWnd()->DrawMenuBar();

m_bSubMenuOn=TRUE;

}

void CMenuDoc::OnEditDeleteDynamicMenu()

{

CMenu *pTopMenu=AfxGetMainWnd()->GetMenu();

pTopMenu->RemoveMenu(1, MF_BYPOSITION);

AfxGetMainWnd()->DrawMenuBar();

m_bSubMenuOn=FALSE;

}

When inserting sub-menu, flag MF_BYPOSITION is used. This is because the first
level menu items do not have command IDs.

After the menu is inserted or removed, we must call function
CWnd::DrawMenuBar() to let the menu be updated. Otherwise although the
content of the menu is actually changed, it will not be reflected to the user
interface until the update is triggered by some other reasons.

2.4 Bitmap Check

The default menu check provided by MFC is a tick mark, and nothing is displayed
when the check is removed. With a little effort, we can prepare our own bitmaps
and use them to implement the checked and unchecked state (Figure 2-3).

To implement the checked and unchecked states of menu items using bitmaps,
we need to call the following member function of CMenu:

BOOL CMenu::SetMenuItemBitmaps

(

UINT nPosition, UINT nFlags, const CBitmap* pBmpUnchecked,

const CBitmap* pBmpChecked

);

The first two parameters of this function indicate which menu item we are
working with. Their meanings are the same with that of functions such as
CMenu::EnableMenuItem(...). When calling this function, we can use either a
command ID or an absolute position to identify a menu item. The third and
fourth parameters are pointers to bitmaps (CBitmap type objects), one for
checked state, one for unchecked state.

Like menu, bitmap can also be prepared as resource then be loaded at
program's runtime. We can edit a bitmap in Developer Studio, and save it as
application's resource. Adding a bitmap resource is the same with adding other
types of resources: we can execute Insert | Resource... command, then select
Bitmap from the popped up dialog box. The newly added resource will be
assigned a default ID, it could also be changed by the programmer.

To load a bitmap resource into the memory, we need to use class CBitmap. This
procedure is similar to loading a menu resource: first we need to use CBitmap to
declare a variable, then call function CBitmap::LoadBitmap(...) to load the
resource. For example, if we have a CBitmap type variable bmp, and our bitmap
resource's ID is IDB_BITMAP, we can load the bitmap as follows:

bmp.LoadBitmap(IDB_BITMAP);

When calling function CMenu::SetMenuItemBitmaps(...), we can pass the
pointers of CBitmap type variables to its parameters.

Sample 2.4\Menu demonstrates bitmap check implementation. It is based on
sample 2.3\Menu, which adds check bitmaps to menu item ID__POPUPITEM1
and ID__POPUPITEM2. Two bitmap resources IDB_BITMAP_CHECK and
IDB_BITMAP_UNCHECK are used to indicate menu item's checked and
unchecked states respectively. Both bitmaps have a size of 15(15, which is a
suitable size for normal menu items. If we use bigger bitmaps, they might be
chopped to fit into the area of menu item.

In the sample, two new CBitmap type variables m_bmpCheck and
m_bmpUnCheck are declared in class CMenuDoc, which are used to load the
bitmap resources:

class CMenuDoc : public CDocument

{

protected:

CMenu m_menuSub;

CBitmap m_bmpCheck;

CBitmap m_bmpUnCheck;

BOOL m_bSubMenuOn;

......

}

In the constructor of CMenuDoc, bitmap resources IDB_BITMAP_CHECK and
IDB_BITMAP_UNCHECK are loaded using two variables. Also, after we load the
pop up menu resource, function CMenu:: SetMenuItemBitmap(...) is called for
both ID__POPUPITEM1 and ID__POPITEM2. We use bitmaps to indicate both
checked and unchecked states. The following code fragment shows how it is
implemented:

CMenuDoc::CMenuDoc()

{

CMenu *ptrMenu;

m_menuSub.LoadMenu(IDR_MENU_POPUP);

m_bmpCheck.LoadBitmap(IDB_BITMAP_CHECK);

m_bmpUnCheck.LoadBitmap(IDB_BITMAP_UNCHECK);

ptrMenu=m_menuSub.GetSubMenu(0);

ptrMenu->SetMenuItemBitmaps(0, MF_BYPOSITION, &m_bmpUnCheck,
&m_bmpCheck);

ptrMenu->SetMenuItemBitmaps(1, MF_BYPOSITION, &m_bmpUnCheck,
&m_bmpCheck);

m_bSubMenuOn=FALSE;

}

When calling function CMenu::SetMenuItemBitmap(...), we use absolute position
instead of command ID to identify a menu item. So the second parameter
passed to the function is MF_BYPOSITION.

Besides these, two UPDATE_COMMAND_UI message handlers are also added to
CMenuDoc to set item ID__POPUPITEM1 to checked state and set
ID_POPUPITEM2 to unchecked state permenently. The following two functions
show the implementation of the messages handlers:

void CMenuDoc::OnUpdatePopUpItem1(CCmdUI *pCmdUI)

{

if(m_bSubMenuOn)pCmdUI->SetCheck(TRUE);

}

void CMenuDoc::OnUpdatePopUpItem2(CCmdUI *pCmdUI)

{

if(m_bSubMenuOn)pCmdUI->SetCheck(FALSE);

}

In the sample, bitmaps are prepared for both checked and unchecked states for
a menu item. When calling function CMenu::SetMenuItemBitmaps(...), if either
of the bitmaps is not provided (the corresponding parameter is NULL), nothing
will be displayed for that state. If both parameters are NULL, the default tick
mark will be used for the checked state.

2.5 System Menu and Bitmap Menu Item

System Menu

By default, every application has a system menu, which is accessible through left
clicking on the small icon located at the left side of application's caption bar, or
right clicking on the application when it is in icon state. The system menu can be
customized to meet special requirement. Especially, we can add and delete
menu items dynamically just like a normal menu.

We already know how to access an application's standard menu. Once we
obtained a CMenu type pointer to the application's standard menu, we can feel
free to add new menu items, remove menu items, and change their attributes

dynamically.

System menu is different from a standard menu. We need to call another
function to obtain a pointer to it. In MFC, the function that can be used to access
system menu is CWnd::GetSystemMenu(...). Please note that we must call this
function for a window that has an attached system menu. For an SDI or MDI
application, system menu is attached to the mainframe window. For a dialog box
based application, the system menu is attached to the dialog window.

Unlike user implemented commands, system commands (commands on the
system menu) are sent through WM_SYSCOMMAND rather than WM_COMMAND
message. If we implement message handlers to receive system commands, we
need to use ON_WM_SYSCOMMAND macro.

Bitmap Menu Item

From the samples in the previous sections, we already know how to customize a
menu item: we can set check, remove check, change text dynamically. We can
also use bitmaps to represent its checked and unchecked states. Besides above
features, a menu item can be modified to display a bitmap instead of a text
string. This can make the application more attractive, because sometimes
images are more intuitive than text strings.

Sample 2.5\Menu demonstrates the two techniques described above, it is based
on sample 2.4\Menu. In this sample, one of the system menu items (a
separator) is changed to bitmap menu item. If we execute this "bitmap
command", a message box will pop up. Also, another new command is added to
the system menu, it allows the user to resume the original system menu.

New Functions

Function CWnd::GetSystemMenu(...) has only one Boolean type parameter:

CMenu *CWnd::GetSystemMenu(BOOL bRevert);

Although we can call this function to obtain a pointer to the system menu and
manipulate it, the original default system menu can be reverted at any time by
calling this function and passing a TRUE value to its bRevert parameter. In this
case, function's returned value has no meaning and should not be treated as a
pointer to a menu object. We need to pass FALSE to this parameter in order to
obtain a valid pointer to the system menu.

Function CMenu::ModifyMenu(...) allows us to change any menu item to a
separator, a sub-menu, a bitmap menu item. It can also be used to modify a
menu item's text. This member function has two versions:

BOOL CMenu::ModifyMenu

(

UINT nPosition, UINT nFlags, UINT nIDNewItem=0, LPCTSTR lpszNewItem =
NULL

);

BOOL CMenu::ModifyMenu

(

UINT nPosition, UINT nFlags, UINT nIDNewItem, const CBitmap* pBmp

);

The first version of this function allows us to change a menu item to a text item,
a separator, or a sub-menu. The second version allows us to change a menu
item to a bitmap item. For the second version, parameter nIDNewItem specifies
the new command ID, and parameter pBmp is a pointer to a CBitmap object,
which must contain a valid bitmap resource.

Menu Modification

In the sample application, a bitmap resource ID_BITMAP_QUESTION is prepared
for implementing bitmap menu item. This bitmap contains a question mark.
There is no restriction on the bitmap size, because the size of menu item will be
adjusted automatically to let the image fit in.

To load the image, a new CBitmap type variable m_bmpQuestion is declared in
class CMainFrame, and bitmap resource ID_BITMAP_QUESTION is loaded in the
constructor of class CMainFrame:

class CMainFrame : public CFrameWnd

{

......

protected:

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

CBitmap m_bmpQuestion;

......

};

CMainFrame::CMainFrame()

{

m_bmpQuestion.LoadBitmap(IDB_BITMAP_QUESTION);

}

The pointer to the system menu is obtained in function
CMainFrame::OnCreate(...). First, system menu's fifth item (a separator) is
modified to a bitmap menu item, then another new command "Resume standard
system menu" is inserted before this bitmap menu item. The IDs of the two
commands are ID_QUESTION and ID_RESUME respectively.

Although we can use any numerical values as the command IDs of the newly
added menu items, they should not be used by other resources of the
application. The best way to prevent this from happening is to generate two new
string resources in the application, and use ID_QUESTION and ID_RESUME as
their symbolic IDs. Because Developer Studio will always allocate unused values
for new resources, we can avoid sharing IDs with other resources by using this
method.

The following shows how we access the system menu and make changes to its
items:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

CMenu *ptrMenu;

......

ptrMenu=GetSystemMenu(FALSE);

ptrMenu->ModifyMenu(5, MF_BYPOSITION, ID_QUESTION, &m_bmpQuestion);

ptrMenu->InsertMenu(5, MF_BYPOSITION, ID_RESUME, "Resume standard
system menu");

return 0;

}

Message Mapping for System Command

In order to trap events for the system menu, we need to handle message
WM_SYSCOMMAND. We can map this message to our member function by using
macro ON_WM_SYSCOMMAND. The format of the message handler is:

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

And the format of mapping macro is:

ON_WM_SYSCOMMAND()

Of course, we can ask Class Wizard to do the mapping for us. Before using it to
add the above message handler to CMainFrame class, we need to make following
changes to the settings of Class Wizard: first click "Class info" tab of the Class
Wizard, then select "Window" from the window "Message filter" (Figure 2-4). The
default message filter for CMainFrame frame window is "Topmost frame", and
WM_SYSCOMMAND will not be listed in the message list. After this modification,
we can go back to "Message Maps" page, and choose "WM_SYSCOMMAND" from
messages window. To add the message handler, we simply need to click "Add
function" button (make sure the settings in other windows are correct). After
this, the new function OnSysCommand(...) will be added to the application.

Here is how this function is declared in class CMainFrame:

class CMainFrame

{

......

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

......

};

The message mapping is as follows:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

......

ON_WM_SYSCOMMAND()

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

Message handler CMainFrame::OnSysCommand(...) has two parameters, first of
which is the command ID, and the second is LPARAM message parameter. In our
case, we only need to use the first parameter, because it tells us which
command is being executed. If the command is ID_RESUME, we need to call
function CMenu::GetSystemMenu(...) to resume the default system menu; if the
command is ID_QUESTION, we pop up a message box:

void CMainFrame::OnSysCommand(UINT nID, LPARAM lParam)

{

if(nID == ID_RESUME)GetSystemMenu(TRUE);

if(nID == ID_QUESTION)AfxMessageBox("Question");

CFrameWnd::OnSysCommand(nID, lParam);

}

2.6 Owner-Draw Menu

When we highlight a bitmap menu item by selecting it using mouse, the bitmap
will be inversed. We have no way of modifying this property because function
CMenu::ModifyMenu(...) requires only one bitmap, which will be used to
implement menu item's normal state. The other states of a bitmap menu item
will be drawn using the default implementations. Normally this is good enough.
However, sometimes we may want to use different bitmaps to represent a menu
item's different states: selected, unselected, checked, unchecked, grayed or
enabled.

Also, sometimes we may want to paint a menu item dynamically. Suppose we
need to create a "Color" menu item: the menu item represents a color that the
user can use, and this color can be modified to represent any available color in
the system. To implement this type of menu item, we can paint it using the
currently selected color. In this case it is not appropriate to create the menu
item using bitmap resources: there may exist thousands of available colors in
the system, and it is just too inconvenient to prepare a bitmap resource for each
possible color.

The owner-draw menu can help us build more powerful user interface. With this
type of menu, we can draw the menu items dynamically, using different bitmaps
to represent different states of the menu item. We can also change the
associated bitmaps at any time.

Overriding Two Functions

The implementation of owner draw menu is not very difficult, all we need is to
override two member functions of class CMenu: CMenu::MeasureItem(...) and
CMenu::DrawItem(...).

By default, the menu is drawn by the system. We can change this attribute by
specifying MF_OWNERDRAW style for a menu. Any menu with this style will be
drawn by its owner. Since a menu's owner is usually the mainframe window (in
SDI and MDI applications), we can add code to class CMainFrame to implement
dynamic menu drawing. Actually, the menu drawing has two associated
messages: WM_MEASUREITEM and WM_DRAWITEM. When a menu item with
MF_OWNERDRAW style needs to be drawn, the menu sends out the above two
messages to the mainframe window. The mainframe window finds out the
pointer to the corresponding menu and calls functions CMenu::MeasureItem(...)
and CMenu::DrawItem(...). Here, the first function is used to retrieve the
dimension of the menu item, which can be used to calculate its layout. The
second function implements menu drawing. We need to override it in order to
implement custom interface.

One simple and most commonly used way to provide graphic interface is to
prepare a bitmap resource then load and draw it at run time. Please note that
this is different from preparing a bitmap resource and calling
CMenu::ModifyMenu(...) to associate the bitmap with a menu item. If we
implement drawing by ourselves, we can manipulate drawing details. For
example, when drawing the bitmap, we can change the size of the image, add a
text over it. If we assign the bitmap to the menu item, we lose the control over
the details of painting the bitmap.

Drawing a Bitmap

To draw a bitmap, we need to understand some basics on graphic device
interface (GDI). This topic will be thoroughly discussed from chapter 8 through
12, here is just a simple discussion on bitmap drawing. In Windows(operating
system, when we want to output objects (a pixel, a line or a bitmap) to the
screen, we can not write directly to the screen. Instead, we must write to the
device context (DC). A device context is a data structure containing information
about the drawing attributes of a device (typically a display or a printer). We can
use DC to write text, draw pixels, lines and bitmaps to the devices. In MFC the
device context is supported by class CDC, which has many functions that can let
us draw different types of objects.

We can implement bitmap drawing by obtaining a target DC and calling member
functions of CDC. The target DC is usually obtained from a window.

A DC can select a lot of GDI objects, such pen, brush, font and bitmap. Pen can
be different type of pens, and brush can be different types of brushes. A DC can
select any pen or brush as its current tool, but at any time, a DC can select only
one pen and one brush. If we want to draw a pixel or a line, we can select the
appropriate pen into the target DC and use it to implement drawing. A DC can
also select bitmap for drawing. However, to paint a bitmap, we can not select it
into the target DC and draw it directly. The normal way of painting a bitmap is to
prepare a compatible memory DC (which is a block of memory with the same
attributes of the target DC), select the bitmap into the memory DC, and copy the
bitmap from the memory DC to the target DC.

We will learn more about DC and bitmap drawing in later chapters. For the time
being, we can neglect the drawing details.

Deriving a New Class from CMenu

Sample 2.6\Menu demonstrates owner-draw menu implementation. It is base on
sample 2.5\Menu. In this sample menu items ID__POPUPITEM1 and
ID__POPUPITEM2 of the dynamic menu are implemented as owner-draw menu,
their menu items are painted using different bitmaps.

Like sample 2.5\Menu, some new images are prepared as bitmap resources. In
the sample, the newly added bitmaps are IDB_BITMAP_QUESTIONSEL,
IDB_BITMAP_SMILE and IDB_BITMAP_SMILESEL. We will use
IDB_BITMAP_SMILE and IDB_BITMAP_SMILESEL to implement owner-draw
menu item ID__POPITEM1, and use IDB_BITMAP_QUESTION to implement
ID__POPITEM2.

First, we need to override class CMenu. In the sample, a new class MCMenu is
derived from CMenu, in this class, we declare four CBitmap type variables that
will be used to load bitmaps for menu drawing. Also, functions

CMenu::MeasureItem(...) and CMenu::DrawItem(...) are overridden:

class MCMenu : public CMenu

{

protected:

CBitmap m_bmpQuestion;

CBitmap m_bmpQuestionSel;

CBitmap m_bmpSmile;

CBitmap m_bmpSmileSel;

public:

MCMenu();

virtual ~MCMenu();

virtual void MeasureItem(LPMEASUREITEMSTRUCT);

virtual void DrawItem(LPDRAWITEMSTRUCT);

};

In the constructor of class MCMenu, four bitmaps are loaded:

MCMenu::MCMenu() : CMenu()

{

m_bmpQuestion.LoadBitmap(IDB_BITMAP_QUESTION);

m_bmpQuestionSel.LoadBitmap(IDB_BITMAP_QUESTIONSEL);

m_bmpSmile.LoadBitmap(IDB_BITMAP_SMILE);

m_bmpSmileSel.LoadBitmap(IDB_BITMAP_SMILESEL);

}

Overriding Function CMenu::MeasureItem(...)

Next we need to override function CMenu::MeasureItem(...). It has only one
parameter, which is a pointer to MEASUREITEMSTRUCT type object. Structure
MEASUREITEMSTRUCT is used to inform system the dimension of the owner-
draw menu and other controls. There are three important members that will be
used: itemWidth and itemHeight, which represent width and height of the menu
item; itemData, from which we know the type of the menu item that is being
inquired.

The program can assign special data to an owner-draw menu item when it is
being created. When the mainframe window calls the overridden functions to
inquire the item's attributes or paint the menu, the data will be passed through
itemData member of structure MEASUREITEMSTRUCT or DRAWITEMSTRUCT
(DRAWITEMSTRUCT will be passed to function CMenu::DrawItem(...)). By
examining this member in the overriden functions, we know what type of menu
item we are working with.

Class CBitmap has a member function that can be used to obtain the size of a
bitmap: CBitmap::GetBitmap(...). We need to prepare a BITMAP type object and
pass its pointer to this function. After calling this function, the structure will be
filled with a lot of information about the bitmap (not only the image dimension).
In this sample, we need to use only two members of BITMAP structure: bmWidth
and bmHeight, which represent a bitmap's width and height.

The following is the overridden function of CMenu::MeasureItem(...):

void MCMenu::MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct)

{

BITMAP bm;

switch(lpMeasureItemStruct->itemData)

{

case MENUTYPE_SMILE:

{

m_bmpSmile.GetBitmap(&bm);

break;

}

case MENUTYPE_QUESTION:

{

m_bmpQuestion.GetBitmap(&bm);

break;

}

}

lpMeasureItemStruct->itemWidth=bm.bmWidth;

lpMeasureItemStruct->itemHeight=bm.bmHeight;

}

In this function, MENUTYPE_SMILE and MENUTYPE_QUESTION are user-defined
macros that represent the type of menu items. First we examine member
itemData and decide the type of the menu item. For different types of menu
items, the corresponding bitmap sizes are retrieved and set to members
itemWidth and itemHeight of structure MEASUREITEMSTRUCT. This size will be
sent to the system and be used to calculate the layout of the whole sub-menu.

Overriding Function CMenu::DrawItem(...)

ow we need to override another member function of CMenu:
CMenu::DrawItem(...). This function uses a different structure,
DRAWITEMSTRUCT. It is used to inform us the state of the menu item, pass the
target DC, and tell us the position where we can draw the customized menu. The
following table lists some of its important members:

(Table omitted)

The following is the overridden function:

void MCMenu::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)

{

CDC *ptrDC;

CDC dcMem;

CBitmap *ptrBmpOld;

CBitmap *ptrBmp;

CRect rect;

if(!(lpDrawItemStruct->CtlType & ODT_MENU))

{

CMenu::DrawItem(lpDrawItemStruct);

return;

}

ptrDC=CDC::FromHandle(lpDrawItemStruct->hDC);

dcMem.CreateCompatibleDC(ptrDC);

if(lpDrawItemStruct->itemState & ODS_SELECTED)

{

switch(lpDrawItemStruct->itemData)

{

case MENUTYPE_SMILE:

{

ptrBmp=&m_bmpSmileSel;

break;

}

case MENUTYPE_QUESTION:

{

ptrBmp=&m_bmpQuestionSel;

break;

}

}

}

else

{

switch(lpDrawItemStruct->itemData)

{

case MENUTYPE_SMILE:

{

ptrBmp=&m_bmpSmile;

break;

}

case MENUTYPE_QUESTION:

{

ptrBmp=&m_bmpQuestion;

break;

}

}

}

ptrBmpOld=dcMem.SelectObject(ptrBmp);

rect=lpDrawItemStruct->rcItem;

ptrDC->BitBlt

(

rect.left,

rect.top,

rect.Width(),

rect.Height(),

&dcMem,

0,

0,

SRCCOPY

);

dcMem.SelectObject(ptrBmpOld);

}

First, we check if the item is a menu. If not, we call the same function
implemented by the base class and return. If so, first we obtain a CDC type
pointer to the target device by calling function CDC::FromHandle(...). Then, we
create a compatible memory DC with target DC, which will be used to draw the
bitmap. Next, we check the menu item's state and type by looking at itemState
and itemData members of structure DRAWITEMSTRUCT, and choose different
bitmaps according to different situations. At last we select the appropriate
bitmap into the memory DC, copy the bitmap to target device using function
CDC::BitBlt(...). This function has many parameters: the first four are position
and size on the target device; the fifth parameter is the pointer to the memory
DC; the last parameter specifies drawing mode (SRCCOPY will copy the source
bitmap to the target device). Finally, we must select the bitmap out of the
memory DC, and resume its original state.

Using the New Class

Now we can use this class to implement owner-draw menu. In the sample
application, the first two items of dynamic menu IDR_MENU_POPUP are
implemented with this style.

First a new MCMenu type variable m_menuModified is declared in class
CMenuDoc (the original m_menuSub variable remain unchanged):

class CMenuDoc : public CDocument

{

protected:

CMenu m_menuSub;

MCMenu m_menuModified;

......

}

The original variable m_menuSub is used to load the menu resource, whose first
sub-menu is obtained by calling function CMenu::GetSubMenu(...) and attached
to variable m_menuModified. By doing this, the system will call the member
functions of class MCMenu instead of CMenu when the owner-draw menu needs
to be painted. To change a menu item's default style, function
CMenu::ModifyMenu(...) is called and MF_OWNERDRAW flag is specified:

CMenuDoc::CMenuDoc()

{

CMenu *ptrMenu;

m_menuSub.LoadMenu(IDR_MENU_POPUP);

m_bmpCheck.LoadBitmap(IDB_BITMAP_CHECK);

m_bmpUnCheck.LoadBitmap(IDB_BITMAP_UNCHECK);

ptrMenu=m_menuSub.GetSubMenu(0);

m_menuModified.Attach(ptrMenu->GetSafeHmenu());

ptrMenu->ModifyMenu

(

0,

MF_BYPOSITION | MF_ENABLED | MF_OWNERDRAW, ID__POPUPITEM1,

(LPCTSTR)MENUTYPE_SMILE

);

ptrMenu->ModifyMenu

(

1,

MF_BYPOSITION | MF_ENABLED | MF_OWNERDRAW, ID__POPUPITEM2,

(LPCTSTR)MENUTYPE_QUESTION

);

m_bSubMenuOn=FALSE;

}

In the above code, menu IDR_MENU_POPUP is loaded into m_menuSub, then
the first sub-menu is obtained and attached to variable m_menuModified. Here,
function CMenu::Attach(...) requires a HMENU type parameter, which can be
obtained by calling function CMenu::GetSafeHmenu(). When calling function
CMenu::ModifyMenu(...), we pass integer instead of string pointer to its last
parameter. This does not matter because the integer provided here will not be
treated as memory address, instead, it will be passed to itemData member of
structure MEASUREITEMSTRUCT (and DRAWITEMSTRUCT) to indicate the type of
the owner-drawn menu items.

Because the popup menu is attached to variable CMenuDoc::m_menuModified,
we need to detach it before application exits. The best place of implementing
this is in class MCMenu's destructor, when the menu object is about to be

destroyed:

MCMenu::~MCMenu()

{

Detach();

}

Now we can compile the sample project and execute it. By executing command
Edit | Insert Dynamic Menu and expanding Dynamic Menu then selecting the first
two menu items, we will see that both selected and unselected states of them
will be implemented by our own bitmaps.

Bitmap is not restricted to only indicating selected and normal menu states. With
a little effort, we could also use bitmap to implement other menu states: grayed,
checked, and unchecked. This will make our menu completely different from a
menu implemented by plain text.

2.7 Changing the Whole Menu Dynamically

If we write MDI application, we can see that the main menu may change with
different type of views. Generally, when there is no client window opened, the
mainframe menu will have only three sub-menus (File, View, Help). After the
user opens a client window, the mainframe menu will be replaced with a new
menu that has more sub-menus. Although we could call CMenu::ModifyMenu(...)
to implement this, it is not efficient because with this method, we have to the
change menu items one by one. Actually, there is another easy way to change
the whole menu dynamically: we can prepare a new menu resource, use it to
replace the menu currently associated with the window at run time.

Class CWnd has a member function that can be used to set a window's menu
dynamically: CWnd::SetMenu(...). The function has only one parameter, which is
a CMenu type pointer. By using this function, we can change an application's
mainframe menu at any time we want. Sample 2.7\Menu demonstrates this
technique. It is a standard SDI application generated by Application Wizard with
all default settings. In the sample, besides mainframe menu IDR_MAINFRAME, a
new menu resource IDR_MAINFRAME_ACTIVE is prepared in the application. This
menu has some new sub-menus (Options, Properties, Settings). For the purpose
of demonstration, none of these sub-menus contains menu items. The default
menu will be changed to this menu after we execute File | New or File | Open
command. If we execute File | Close command from menu
IDR_MAINFRAME_ACTIVE, the default menu will be resumed.

Three WM_COMMAND message handlers for commands ID_FILE_NEW,
ID_FILE_OPEN and ID_FILE_CLOSE are generated using class wizard. The
member functions are named OnFileNew, OnFileOpen and OnFileClose. In the
first two functions, we change the mainframe menu to
IDR_MAINFRAME_ACTIVE, and in the third function, we change the menu back
to IDR_MAINFRAME:

void CMenuDoc::OnFileNew()

{

CMenu menu;

menu.LoadMenu(IDR_MAINFRAME_ACTIVE);

AfxGetMainWnd()->SetMenu(&menu);

AfxGetMainWnd()->DrawMenuBar();

menu.Detach();

}

void CMenuDoc::OnFileOpen()

{

CMenu menu;

menu.LoadMenu(IDR_MAINFRAME_ACTIVE);

AfxGetMainWnd()->SetMenu(&menu);

AfxGetMainWnd()->DrawMenuBar();

menu.Detach();

}

void CMenuDoc::OnFileClose()

{

CMenu menu;

menu.LoadMenu(IDR_MAINFRAME);

AfxGetMainWnd()->SetMenu(&menu);

AfxGetMainWnd()->DrawMenuBar();

menu.Detach();

}

In the above three member functions, we use a local variable menu to load the
menu resource. It will be destroyed after the function exits. So before the
variable goes out of scope, we must call function CMenu::Detach() to release the
loaded menu resource so that it can continue to be used by the application.
Otherwise, the menu resource will be destroyed automatically.

Summary

1) In order to execute commands, we need to handle message WM_COMMAND.
In order to update user interfaces of menu, we need to handle message
UPDATE_COMMAND_UI.

2) To implement right-click menu, we need to first prepare a menu resource,
then trap WM_RBUTTONDOWN message. Within the message handler, we can
use CMenu type variable to load the menu resource, and call
CMenu::TrackPopupMenu(...) to activate the menu and track mouse activities.
Before the menu is shown, we can call functions CMenu::EnableMenuItem(...)
and CMenu::CheckMenuItem(...) to set the states of the menu items.

3) To add or remove a menu item dynamically, we need to call functions
CMenu::InsertMenu(...) and CMenu::RemoveMenu(...).

4) With function CMenu::SetMenuItemBitmaps(...), we can use bitmap images
to implement checked and unchecked states for a menu item.

5) A window's standard menu can be obtained by calling function
CWnd::GetMenu(), and the application's system menu can be obtained by calling
function CWnd::GetSysMenu(...).

6) We can change a normal menu item to a bitmap menu item, a separator, or a
sub-menu by calling function CMenu::ModifyMenu(...).

7) Owner-draw menu can be implemented by setting MF_OWNERDRAW style

then overriding functions CMenu::MeasureItem(...) and CMenu::DrawItem(...).

8) We can change the whole menu attached to a window by calling function
CWnd::SetMenu(...).

BACK TO INDEX

Chapter 3 Splitter Window
A splitter window resides within the frame window. It is divided into several
panes, each pane can have a different size. Splitter window provides the user
with several different views for monitoring data contained in the document at the
same time. Normally, the size of each pane can be adjusted freely, this gives the
user a better view of data. There are two types of splitter windows: Dynamic
Splitter Window and Static Splitter Window. For a dynamic splitter window, all
views within the splitter window are of the same type. The user can create new
panes or remove old panes on the fly. For a static splitter window, the views
could be of different types and the number of panes has to be fixed at the
beginning. In this case, the user can not add or delete views after the program
has started.

Both SDI and MDI applications can have splitter windows. In an SDI application,
the splitter window is embedded in the mainframe window. In an MDI
application, it is embedded in the child frame window.

3.1 Implementing Static Splitter Windows

In MFC, class CSplitterWnd is used to implement window splitting. To split a
window into several panes, we must first declare a CSplitterWnd type variable in
the frame window class. One CSplitterWnd can divide window into M(N sub-
panes. The splitter window can be nested, which means we can further split a
single pane into several sub panes by using another CSplitterWnd type variable.
So if we want to create an unevenly divided splitter window, we need to declare
more than one CSplitterWnd type variables.

For example, if we want to create a splitter window that has two rows, the first
row has two columns and the second row has two columns, we need to first split
the client area into a 1(2 splitter window, then split the first row into a 2(1
splitter window (Figure 3-1).

(Figure omitted)

To create static splitter window, first we need to declare CSplitterWnd type
variable(s) in the frame window class, then in frame window's

OnCreateClient(...) member function, call functions
CSplitterWnd::CreateStatic(...) and CSplitterWnd::CreateView(...). Here,
function CSplitterWnd:: CreateStatic(...) is used to split the window into several
panes and CSplitterWnd::CreateView(...) is used to attach a view to each pane.

Sample application 3.1\Sdi\Spw demonstrates how to implement splitter
window. It is generated by Application Wizard, with all settings set to default
ones. Four main classes used to implement the application are CSpwApp,
CMainFrame, CSpwDoc and CSpwView.

Each pane of the splitter window must be attached with a view in order to make
it work. The view could be implemented by deriving class from any of the
standard view classes: CView, CScrollView, CRichEditView, CListView, CTreeView
etc. In the sample, besides the default view CSpwView created by the
Application Wizard, two other classes are derived from CFormView and
CEditView, which will be used to implement different panes of the splitter
window.

Class CFormView is a standard MFC class that can be used to create view
window from dialog template. A CFormView class must have a corresponding
dialog template resource, which will be used to create the view. To implement a
form view, we must first design dialog template, then derive a new class from
CFormView.

In the sample, the dialog template used to implement the form view is
IDD_DIALOG_VIEW. Its styles are set to "Child" and "No border", this is exactly
the same with that of dialog bar (This is because both splitter window and dialog
bar must be child windows). The dialog template contains a static text control
and a multiple-line edit box. By double clicking on the dialog template resource,
we will be prompted to add a new class for it. In this case the template resource
ID will be automatically selected to be used by the new class. In the sample
application, the new class is named CSpwFView. If the dialog template is not
open when adding this new class, we must select the dialog ID by ourselves
(Figure 3-2).

(Figure omitted)

The other pane of the splitter window is implemented using edit view. The new
class for this window is derived from CEditView, and its name is CSpwEView.

To split a window, we need to call function CSplitterWnd::CreateStatic(...),
which has five parameters:

(Cde omitted)

The first parameter pParentWnd is a CWnd type pointer that points to the parent
window. Because a splitter window is always the child of frame window, this
parameter can not be set to NULL. The second and third parameters specify the
number of rows and columns the splitter window will have. The fourth parameter
dwStyle specifies the styles of splitter window, whose default value is WS_CHILD
| WS_VISIBLE. The fifth parameter, nID, identifies which splitter window is being
created. This is necessary because within one frame window, we can create
several nested splitter windows. For the root splitter window (The splitter
window whose parent window is the frame window), this ID must be
AFX_IDW_PANE_FIRST. For other nested splitter windows, this ID need to be
obtained from the parent splitter windows by calling function
CSplitterWnd::IdFromRowCol(...), and passing appropriate column and row
coordinates to it. The following is the format of this function:

int CSplitterWnd::IdFromRowCol(int row, int col);

To attach a specific view to a pane, we need to call function
CSplitterWnd::CreateView(...), which also has five parameters:

(Code omitted)

The first two parameters specify which pane is being created. The third
parameter specifies what kind of view will be used to create this pane. Usually
macro RUNTIME_CLASS must be used to obtain a CRuntimeClass type pointer.
The fifth parameter is a creation context used to create the view. Within
CMainFrame::OnCreateClient(...), the creation context is passed through the
second parameter of this function.

In the sample application, we first use m_wndSpMain to call function
CSplitterWnd:: CreateStatic(...) to split the client window into a 2(1 splitter
window. Then, we use this variable to call CSplitterWnd::CreateView(...) and
pass two 0s to the first two parameters of this function (This specifies (0, 0)
coordinates). This will attach a new view to the left pane of the splitter window.
Next we use m_wndSpSub to call CSplitterWnd::CreateStatic(...) to further split
the right pane into a 1(2 splitter window, and call CSplitterWnd::CreateView(...)
twice to create views for the two panes. At last, instead of calling function
CMainFrame::OnCreateClient(...), a TRUE value is returned. This can prevent the
default client window from being created.

The following steps show how the static splitter window is implemented in the
sample:

1) Declare two CSplitterWnd type variables in class CMainFrame:

class CMainFrame : public CFrameWnd

{

......

protected:

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

CSplitterWnd m_wndSpMain;

CSplitterWnd m_wndSpSub;

......

}

Variable m_wndSpMain will be used to split the mainframe client window into a
2(1 splitter window, and m_wndSpSub will be used to further split the right
column into a 1(2 splitter window.

2) In function CMainFrame::OnCreateClient(...), create splitter windows and
attach views to each pane:

(Code omitted)

For an MDI application, everything is almost the same except that here
CChildFrame replaces class CMainFrame. We can create an MDI application,
declare m_wndSpMain and m_wndSpSub variables in class CChildFrame, and
add code to CChildFrame::OnCreateClient(...) to create splitter windows. The
code required here is exactly the same with implementing splitter window in an
SDI application. Sample 3.1\MDI\Spw demonstrates this.

3.2 Dynamic Splitter Window

Once we understand how to create static splitter window, it is easier for us to
create dynamic splitter window because it takes fewer steps. For a dynamic
splitter window, all panes are created to be the same type of view, so there is no
need to call function CSplitterWnd::CreateView(...) for each individual pane.
Also, instead of calling CSplitterWnd::CreateStatic(...), we need to call function
CSplitterWnd:: Create(...) to create dynamic splitter window within function
CFrameWnd::OnCreateClient(...). The following is the format of function
CSplitterWnd::Create(...):

BOOL CSplitterWnd::Create

(

CWnd* pParentWnd,

int nMaxRows, int nMaxCols,

SIZE sizeMin,

CCreateContext* pContext,

DWORD dwStyle=WS_CHILD | WS_VISIBLE |WS_HSCROLL | WS_VSCROLL |
SPLS_DYNAMIC_SPLIT,

UINT nID=AFX_IDW_PANE_FIRST

);

The difference between function CSplitterWnd::CreateStatic(...) and
CSplitterWnd::Create(...) is that when creating dynamic splitter window, we
need to specify the maximum number of rows and columns. The maximum
values of nMaxRows and nMaxCols parameters are both 2, which means that a
window can be split to have at most 2x2 panes.

The Application Wizard has a built-in feature to add dynamic splitter window to
the applications. In step 4 of the Application Wizard, if we press "Advanced..."
button, an "Advanced Options" property sheet will pop up. By clicking "Window
styles" tab then checking "Use split window" check box, code will be
automatically added to the application for implementing dynamic split window
(static splitter window can not be created this way).

It is also simple to implement splitter window manually. Like creating static split
window, first we need to declare a CSplitterWnd type variable in class
CMainFrame (In MDI applications, we need to do this in class CChildFrame).
Then we can use Class Wizard to override function OnCreateClient(...). Within
the overridden function, we can call CSplitterWnd::Create(...) to create splitter
window.

Sample 3.2\Spw demonstrates how to create dynamic splitter window in an SDI
application. The application is created from Application Wizard with all default
settings. Then a new variable m_wndSp is declared in class CMainFrame, which
will be used to implement the splitter window. In function

CMainFrame::OnCreateClinet(...), the splitter window is created as follows:

(Code omitted)

In the above code, we did not pass any value to dwStyle and nID parameters of
function CSplitterWnd::Create(...), so the default values are used.

3.3 Customizing the Behavior of Split Bar

The behavior of a dynamic splitter window is different from that of a static
splitter window. For the dynamic splitter window, panes could be dynamically
created by double clicking on the split boxes (Figure 3-3). After new panes are
added, one or more split bars will appear. If the user double clicks any of the
split bar, one f the two panes divided by that split bar will be deleted (Figure 3-
4). We can examine the sample applications we've created to see the difference
between static splitter window and dynamic splitter window.

(Figure omitted)

This behavior could be customized. For example, sometimes by double clicking
on the split bar, we want to resize the two panes instead of deleting one of
them. This feature gives the user much convenience for changing the size of
each pane bit by bit.

Splitter Window Layout

We need to override the following two member functions of class CSplitterWnd in
order to implement this feature: CSplitterWnd::DeleteRow(...) and
CSplitterWnd::DeleteColumn(...). When the user double clicks on the split bar,
one of the two functions will be called to delete a row or column dynamically. In
order to customize this behavior, after the split bar is clicked, we can first
change the size of each pane, then judge if the size of one pane is smaller than
its minimum size. If so, we call the default implementation of the corresponding
function to delete one row or column.

To change a pane's size, we need to call function
CSplitterWnd::SetColumnInfo(...) and CSplitterWnd::SetRowInfo(...). The
current size of a pane could be obtained by their counterpart functions
CSplitterWnd::GetColumnInfo(...) and CSplitterWnd::GetRowInfo(...). The
following shows the formats of the above four functions:

void CSplitterWnd::SetColumnInfo(int col, int cxIdeal, int cxMin);

void CSplitterWnd::SetRowInfo(int row, int cyIdeal, int cyMin);

void CSplitterWnd::GetColumnInfo(int col, int& cxCur, int& cxMin);

void CSplitterWnd::GetRowInfo(int row, int& cyCur, int& cyMin);

In the above functions, parameters row and col are used to identify a pane with
specified row and column indices, cyIdeal and cxIdeal are the ideal size of a
pane, cyMin and cxMin indicate minimum size of it.

When the splitter window is being displayed, each pane's dimension is decided
from its ideal size. According to the current size of the frame window, some
panes may be set to their ideal sizes, but some may not (This depends on how
much space is left for that pane). In any case, a pane's actual size should not be
smaller than its minimum size. This is why we need both ideal size and minimum
size to set a row or column's dimension.

The number of rows and columns a splitter window currently has can be
obtained by calling other two member functions of CSplitterWnd:

int CSplitterWnd::GetRowCount();

int CSplitterWnd::GetColumnCount();

After we call function CSplitterWnd::SetColumnInfo(...) or
CSplitterWnd::SetRowInfo(...), the old layout will not change until we call
function CSplitterWnd::RecalcLayout() to update the splitter window. The system
will re-calculate the layout for each pane according to their new sizes (both ideal
size and minimum size), and the split bar will be moved to a new position
according to the new layout.

Overriding CSplitterWnd::DeleteRow(...) and CSplitterWnd:: DeleteColumn(...)

Sample 3.3\Spw is based on sample 3.2\Spw. In the new sample, the behavior
of the split bar is modified: if the user double clicks on it, it will move a small
step downward (for horizontal split bar) or rightward (for vertical split bar). A
pane will be deleted after it reaches its minimum size.

In the sample application, first a new class MCSplitterWnd is derived from class
CSplitterWnd:

class MCSplitterWnd : public CSplitterWnd

{

public:

void DeleteRow(int);

void DeleteColumn(int);

};

The class does nothing but overriding two functions. The implementation of
function MCSplitterWnd ::DeleteRow(...) is listed as follows:

(Code omitted)

Since the maximum number of rows that can be implemented in a dynamic split
window is 2, we will call the default implementation of this function (the
corresponding function of the base class) if the number of rows is not 2.
Otherwise, we first obtain the size of upper pane (pane 0), enlarge its vertical
size, and set its current size. Then the current size of lower pane is reduced, if
its ideal size is smaller than its minimum size after change, we simply call
function CSplitterWnd::DeleteRow(...) to delete this row. If the panes are
resized instead of being deleted, we call function CSplitterWnd::RecalcLayout()
to update the new layout.

Function MCSplitterWnd::DeleteColumn(int colDelete) is implemented in the
same way, except that here we call all the functions dealing with column instead
of row.

Using the New Class

Using this new class is simple, we just need to include the header file containing
class MCSplitterWnd in file "MainFrm.h", then use it to declare variable
m_wndSpw in class CMainFrame as follows:

class CMainFrame : public CFrameWnd

{

protected:

CMainFrame();

DECLARE_DYNCREATE(CMainFrame)

MCSplitterWnd m_wndSp;

......

}

After these changes, by compiling and executing the application again, we will
see that the split bar behaves differently.

3.4 Customizing the Default Appearance

Drawing Functions

Class CSplitterWnd has two member functions that can be overridden to
customize the appearance of split bar, split box, split border, and split tracker.
The functions are CSplitterWnd::OnDrawSplitter(...) and
CSplitter::OnInvertTracker(...) respectively, which have the following formats:

void CSplitterWnd::OnDrawSplitter(CDC *pDC, ESplitType nType, const CRect
&rect);

void CSplitterWnd::OnInvertTracker(const CRect &rect);

Function CSplitterWnd::OnDrawSplitter(...) is called when either the split bar,
split box or split border needs to be painted. It has three parameters, the first of
which is a pointer to the target device DC, which will be used to draw the
objects. The second parameter is an enumerate type, which indicates what type
of object is being drawn. This parameter could be either CSplitterWnd::splitBox,
CSplitterWnd::splitBar, or CSplitterWnd::splitBorder, which indicates different
splitter window objects. The third parameter specifies a rectangle region within
which the object will be drawn.

Function CSplitterWnd::OnInvertTracker(...) is called when the user clicks the
mouse on the split bar and drags it to resize the panes contained in the splitter
window. In this case, a tracker will appear on the screen and move with the
mouse. By default, the tracker is a grayed line. By overriding this function, we
could let the tracker have a different appearance.

Sample

Sample 3.4\Spw demonstrates how to customize these styles. It is based on
sample 3.3\Spw. First, two functions are declared in class MCSplitterWnd to
override the default implementation:

class MCSplitterWnd : public CSplitterWnd

{

public:

virtual void DeleteRow(int);

virtual void DeleteColumn(int);

protected:

virtual void OnDrawSplitter(CDC*, CSplitterWnd::ESplitType, const CRect&);

virtual void OnInvertTracker(const CRect& rect);

};

Function MCSplitterWnd::OnDrawSplitter(...) is overridden as follows:

(Code omitted)

In the above function, first parameter pDC is checked. If it is not an available
DC, we do nothing but calling the default implementation of the base class.
Otherwise, the object type is checked. We will go on to implement the
customization if the object is either a split bar or a split box.

The simplest way to fill a rectangle with certain pattern is to use brush. A brush
can be different types: solid, hatched, etc. It could also be initialized with any
color. To use a brush, we need to first create brush, then select it into the device
context. If we draw a rectangle with this DC, the interior of the rectangle will be
automatically filled with the currently selected brush, and its border will be
drawn using the currently selected pen. After using the brush, we must select it
out of the DC.

Brush selection can be implemented by calling function CDC::SelectObject(...).
This function will return a pointer to the old brush. After using the brush, we can
call this function again and pass the old brush to it. This will let the old brush be
selected into the DC so the new brush is selected out.

When creating a brush, we need to use RGB macro to indicate the brush color.
The three parameters of RGB macro indicate the intensity of red, green and blue
colors.

A rectangle can be drawn by calling function CDC::Rectangle(...). We need to
pass a CRect type variable to indicate the position and size of the rectangle.

In the sample, function MCSplitterWnd::OnInvertTracker(...)is implemented as

follows:

(Code omitted)

There is no CDC type pointer passed to this function. However, for any window,
its DC could always be obtained by calling function CWnd::GetDC(). This
function will return a pointer to window's device context. After we use the DC,
we must release it by calling function CWnd::ReleaseDC(...). In function
MCSplitterWnd::OnDrawSplitter(...), first a solid brush with red color is created,
then we select it into the DC, call function CDC::PatBlt(...) to fill the interior of
the rectangle using the selected brush.

Function CDC::PatBlt(...) allows us to create a pattern on the device. We can
choose different color output mode: we can copy the brush color to the
destination, or we can combine brush color with the color on the target device
using bit-wise operations. The first four parameters of function CDC::PatBlt(...)
indicate the position and size of the rectangle within which we can output the
pattern. The fifth parameter indicates the output mode. In the sample we use
PATINVERT drawing mode, this will combine the destination color and brush
color using bit-wise XOR operation. With this mode, the tracker can be easily
erased if it is drawn twice.

Since we use PATINVERT mode to paint the tracker, its color will become the
complement color of red when the user resizes panes using the mouse.

3.5 Splitter Window That Can't be Resized by Tracking

Sometimes we want each pane of the splitter window to have a fixed size and
prevent the user from resizing the panes through using mouse or keyboard.
Since dynamic resizing is a built-in feature of class CSplitterWnd, whenever we
directly derive a class from it, we will automatically have a resizable split bar. It
is not easy to disable this feature because by default, mouse clicking and
dragging events will be processed automatically.

In class CSplitterWnd, four mouse messages are handled to change the state of
the split bar: mouse left button down message WM_LBUTTONDOWN, mouse left
button up message WM_LBUTTONUP, mouse move message WM_MOUSEMOVE,
and left button double click message WM_LBUTTONDBLCLK. We need to disable
only the first message handler if we want to disable tracking resize feature
(Once the application cannot enter the tracking state, the rest messages will be
processed normally instead of being treated as part of tracking instructions).

By default, when left button is clicked on a split bar, class CSplitterWnd will
respond to this event by letting the user drag the split bar and place it to a new
place. We can bypass this feature by overriding WM_LBUTTONDOWN message

handler. Instead of calling the message handler implemented by CSplitterWnd,
we can call the default function implemented by class CWnd, which is the base
class of CSplitterWnd. For a dynamic splitter window, the WM_LBUTTONDBLCLK
message handler should not be overridden because after we disable the tracking,
double clicking becomes the only way that can be used by the user to
dynamically add or delete panes. For WM_MOUSEMOVE and WM_LBUTTONUP
messages, we don't need to modify their handlers because after message
WM_LBUTTONDOWN is bypassed, the tracking will not happen anymore.

Sample 3.5\Spw demonstrates how to implement splitter window that cannot be
resized through tracking the split bar. It is based on sample 3.4\Spw.

To let class MCSplitterWnd support both resizable and non-resizable split bars, a
new Boolean type variable m_bResizable is declared in the class. Along with this
variable a new member function MCSplitterWnd::SetResizable(...) is also
declared, which can be called to set m_bResizable flag and indicate if tracking
resize feature is currently supported. At the beginning variable
MCSplitterWnd::m_bResizable is initialized to TRUE in the constructor. The
following code fragment shows the modified class:

(Code omitted)

A WM_LBUTTONDOWN message handler is added to the application. This
includes function declaration, adding ON_WM_LBUTTONDOWN message mapping
macro, and the implementation of member function. Before adding message
mapping, we need to make sure that DECLARE_MESSAGE_MAP macro is
included in the class. This will enable massage mapping for the class. The
following lists necessary steps for implementing the above message mapping:

1) Declare an afx_msg type member function OnLButtonDown(...) in the class.
This function is originally declared in class CWnd, here we must declare it again
in order to override it:

class MCSplitterWnd : public CSplitterWnd

{

......

protected:

......

afx_msg void OnLButtonDown(UINT, CPoint);

DECLARE_MESSAGE_MAP()

};

2) In the implementation file, add ON_WM_LBUTTONDOWN macro between
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP macros:

BEGIN_MESSAGE_MAP(MCSplitterWnd, CSplitterWnd)

//{{AFX_MSG_MAP(MCSplitterWnd)

//}}AFX_MSG_MAP

ON_WM_LBUTTONDOWN()

END_MESSAGE_MAP()

Macro ON_WM_LBUTTONDOWN maps message WM_LBUTTONDOWN to function
OnLButtonDown(...).

3) Implement the message handler as follows:

void MCSplitterWnd::OnLButtonDown(UINT uFlags, CPoint point)

{

if(m_bResizable == TRUE)CSplitterWnd::OnLButtonDown(uFlags, point);

else CWnd::OnLButtonDown(uFlags, point);

}

The function implementation is simple. If the splitter window is trackable, we call
CSplitterWnd::OnLButtonDown(...), which will implement tracking if mouse
cursor is over the split bar. Otherwise we bypass this feature by calling function
CWnd::OnLButtonDown(...).

If the splitter window is created by the Application Wizard, there will be a
command View | Split implemented in the application. By default, this command
gives an alternate way to resize panes by tracking the split bar. If we want to
disable the tracking completely, we also need to disable or remove this menu
command.

Summary

1) To implement static splitter window, we need to derive a class from CView (or
other type of view classes) for each pane, then declare a CSplitterWnd type
variable in class CMainFrame. In function CMainFrame::OnCreateClient(...), we
need to call CSplitterWnd::CreateStatic(...) to create the splitter window and call
CSplitterWnd::CreateView(...) to attach a view to each pane.

2) Static splitter window can be nested. This means instead of attaching a view,
we can use CSplitterWnd to further create splitter window within a pane.

3) Creating dynamic splitter window is simple. In order to do this, we need to
declare a CSplitterWnd type variable in class CMainFrame; then in
CMainFrame::OnCreateClient(...), we need to call function
CSplitterWnd::Create(...).

4) We can override functions CSplitterWnd::DeleteRow(...) and
CSplitterWnd::DeleteColumn(...) to customize the behavior of split bars.

5) We can override functions CSplitterWnd::OnDrawSplitter(...) and
CSplitterWnd:: OnInvertTracker(...) to customize the appearance of split bar,
split box, split border and tracker.

6) To disable split bar tracking, we need to call CWnd::OnLButtonDown(...)
instead of CSplitterWnd:: OnLbuttonDown(...) when handling message
WM_LBUTTONDOWN.

BACK TO INDEX

Chapter 4 Buttons
Button is one of the most commonly used controls, almost every application
needs to include one or more buttons. It seems that it is very easy to implement
a standard button in a dialog box: all we need to do is adding a button resource
to the dialog template, then using Class Wizard to generate message handlers.
However, it is not very easy to further customize button's default properties.

In this chapter, we will discuss how to implement different type of customized
buttons. At the end of this chapter, we will be able to include some eye-catching
buttons in our applications.

4.1 Bitmap Button: Automatic Method

Generally, buttons display plain text on its interface. Sometimes it is more
desirable to let them have graphic user interface. A typical application that uses
this type of buttons would be a CD player, everyone would like the play button
to have a graphic interface instead of just displaying text such as "play", "stop"
(so that it looks like a real "play" button).

Button States

Before customizing button's default feature, it is important for us to understand
some basics of buttons. Every button has four states. When a button is not
clicked, is in "up" state (the most common state). When it is pressed down, it is
in "down" state. To emphasis a button's 3D effect, a default button will recess
when it is pressed by the mouse. Also, a button could be disabled, in this state,
the button will not respond to any mouse clicking (As the default
implementation, when a button is disabled, it will be drawn with "grayed" effect).
Finally, a button has a "focused" or "unfocused" state. In the "focused" state, the
button is an active window, and is accessible through using keyboard (ENTER or
downward ARROW key). For the default implementation, a rectangle with dashed
border will be drawn over a button's face when it has the current focus.

Owner-Draw Bitmap Button

We can use owner draw bitmap button to add graphics to the button. To

distinguish among different states, we need to associate different states with
different images if necessary.

The simplest way to create this type of button is to implement bitmap button
using class CBitmapButton. To create a bitmap button, first we must set its
"Owner Draw" style. This can be implemented by checking "Owner Draw" check
box in the "Push Button Properties" property sheet when creating the button
resource (We need to add button resource in order to create button, this is the
same with a normal button. See Figure 4-1). For an owner-draw button,
message WM_DRAWITEM will be sent to the button when it needs to be painted
(remember, a button is also a window that can receive message). Upon receiving
this message, the button will be drawn by the overridden function. For non-
owner-draw button, its interface is implemented by the default method, and will
display a plain text on the button's face.

Class CBitmapButton handles message trapping and processing; also, it contains
member functions that can be used to paint the button. If we use this class to
implement bitmaps buttons, all we need to do is preparing some bitmap
resources, declaring variables using class CBitmapButton, and associating
bitmap resources with the corresponding buttons.

Although every button has four states, we do not need to provide four bitmaps
all the time. If one of the bitmaps is not available, class CBitmapButton will draw
the button's corresponding state using the default bitmap, which is the bitmap
associated with button's "up" state. So the bitmap used to represent a button's
"up" state is required all the time and can not be omitted.

Automatic Method

We have two ways of associating bitmap images with different states of a bitmap
button: we can either let class CBitmapButton handle this automatically or we
can do it manually. To use the automatic method, the IDs of all four bitmap
resources must be text strings, and must be formed by suffixing one of the
following four letters to the button's caption text: 'U', 'D', 'F', 'X'. These letters
represent "up", "down", "focused" and "disabled" state respectively. By naming
the resource IDs this way, the rest thing we need to do is calling function
CBitmapButton::AutoLoad() in the dialog box's initialization stage (within
member function CDialog::OnInitDialog()). Please note that we cannot call this
function in the constructor of class CDialog. At that time, the dialog box window
is still not created (Therefore, the buttons are still not available), and the
bitmaps cannot be associated with the button correctly.

Sample

Sample 4.1\Btn demonstrates how to create bitmap button using automatic

method. It is a dialog-based application that is generated by the Application
Wizard. First, the ID of default dialog template is changed to IDD_DIALOG_BTN.
Also, the "OK" and "Cancel" buttons originally included in the template are
deleted. Then a new button IDC_PLAY is added, whose caption text is set to
"Play" (Figure 4-2). Since the button will be drawn using the bitmaps, it doesn't
matter how big the button resource is. Besides this, we need to set button's
style to "Owner draw".

Two bitmap resources are added to the application whose IDs are "PLAYU" and
"PLAYD" respectively (Figure 4-3). They correspond to button's "up" and "down"
states. In addition, the sizes of the two bitmaps are exactly the same.

A CBitmapButton type variable is declared in class CBtnDlg to implement this
bitmap button:

class CBtnDlg : public CDialog

{

......

protected:

......

CBitmapButton m_btnPlay;

......

};

Within function CBtnDlg::OnInitDialog(), function CBitmapButton::AutoLoad(...)
is called to initialize the bitmap button and associate it with the corresponding
bitmap resources. After this call, we don't need to do anything. The bitmap
button will be created and its states will be set automatically:

BOOL CBtnDlg::OnInitDialog()

{

......

m_btnPlay.AutoLoad(IDC_PLAY, this);

......

}

Function CBitmapButton::AutoLoad(...) has two parameters, first of which is the
button's resource ID, and the second is a pointer to the button's parent window.

In the sample application only two bitmap images are prepared. We may add
two other bitmaps whose IDs are "PLAYF" and "PLAYX". Then we can enable or
disable the button to see what will happen to the button's interface.

4.2 Bitmap Check Box and Radio Button: Method 1

The bitmap button implemented this way behaves like a push button.
Unfortunately, in MFC, there is no class such as CBitmapCheckBox and
CBitmapRadioButton to let us implement bitmap check box or radio button.
However, check box and radio button are another two types of buttons, both of
them can be implemented using class CButton.

A button implemented by class CButton can display either plain text or bitmap.
Actually, there is a member function of CButton that allows us to associate
button with a bitmap: CButton::SetBitmap(...).

If a button implemented by class CButton can also be associated with a bitmap,
what is the difference between CBitmapButton and CButton? First,
CBitmapButton is derived from CButton, so it has more features than CButton.
For example, with CBitmapButton, we can use automatic method to associate
button with bitmap resources by calling function CBitmapButton::AutoLoad(...).
Second, CButton allows only one bitmap to be associated with a button at any
time, and it always implement the focus state of the button by drawing a dash-
bordered rectangle over button's face.

Although only one bitmap could be associated with a button at any time, we still
can manage to represent a button's different states using different bitmaps.

The trick here is to change button's associated bitmap whenever its state
changes. To achieve this, we must implement a WM_COMMAND message
handler for the button. For example, in the case of check box, we can find out
whether the current state of the check box is "Checked" or "Unchecked". Based
on this information, we can decide which bitmap should be used.

Sample 4.2\Btn demonstrates the above method. It is based on sample 4.1\Btn.
In the sample, three new buttons are added: one of them is implemented as a
check box; the rest are implemented as radio buttons. The following describes
how the bitmap check box and radio buttons are implemented in the sample:

1) Add a check box and two radio buttons to the dialog template. Name the IDs
of new controls IDC_CHECK, IDC_RADIO_A and IDC_RADIO_B respectively. In
the property sheet that lets us customize control's properties, check "Bitmap"
check box (Figure 4-4).

(Figure omitted)

2) Add two bitmap resources, one for checked state and one for unchecked
state. Their resource IDs are ID_BITMAP_CHECK and ID_BITMAO_UNCHECK
respectively. The bitmaps must have a same size.

3) Declare two CBitmap type variables m_bmpCheck and m_bmpUnCheck in
class CBtnDlg, in function CBtnDlg::OnInitDlg(), call CBitmap::LoadBitmap(...)
to load the two bitmap resources. Then call function CButton::SetBitmap(...) to
set bitmap for the check box and radio buttons. In the sample, all of the new
controls are initialized to unchecked state (In order to do this, we need to
associate buttons with m_bmpUnCheck instead of m_bmpCheck). The following
code fragment shows the modified class CBtnDlg and the function
CBtnDlg::OnInitDialog(...):

(Code omitted)

4) Declare a new member function CBtnDlg::SetCheckBitmap(...). We will use it
to set a button's bitmap according to its current state. The function has one
parameter nID that identifies the control. Within the function, first the button's
current state is examined, if it is checked, we call CButton::SetBitmap(...) to
associate it with IDB_BITMAP_CHECK; otherwise we use bitmap
IDB_BITMAP_UNCHECK. The following is the implementation of this function:

(Code omitted)

5) Use Class Wizard to implement three WM_COMMAND message handlers for
IDC_CHECK, IDC_RADIO_A and IDC_RADIO_B. Within each handler, we call
CBtnDlg::SetCheckBitmap(...) to set appropriate bitmaps. Because two radio
buttons should be treated as a group (if one is checked, the other one will be
unchecked automatically), we need to set both button's bitmaps within each
message handler:

(Code omitted)

In step 3, when calling CWnd::GetDlgItem(...), we pass the control's resource ID
to the function to obtain a pointer to the control and use it to call function
CButton::SetBitmap(...). Because CWnd::GetDlgItem(...) will return a CWnd
type pointer, we must first cast it to CButton type pointer before calling the

member function of CButton.

Function Cbutton::SetBitmap(...) has an HBITMAP type parameter, which
requires a valid bitmap handle. A bitmap handle can be obtained by calling
function CBitmap::GetSafeHandle(), of course, the returned handle is valid only
after the bitmap is loaded.

In step 4, function CButton::GetCheck() is called to retrieve button's current
state (checked or unchecked). The function returns a Boolean type value, if the
returned value is TRUE, the button is being checked, otherwise it is not checked.

After these modifications, the bitmap check box and radio buttons will become
functional.

4.3 Subclass

In section 4.1, we used automatic method to create bitmap buttons. This
requires us to create owner-draw buttons with special caption text, which will be
used to name the bitmap resource IDs. For simple cases, this is a very
convenient method. However, if we implement bitmap buttons this way, it is
difficult for us to customize them at runtime.

Implementing Subclass

Class CBitmapButton gives us another member function that can be used to
associate bitmaps with an owner-draw button:
CBitmapButton::LoadBitmaps(...). This function has two versions, the first
version allows us to load bitmaps with string IDs, the second version allows us to
load bitmaps with integer IDs.

To use this function, we must first implement subclass for the owner-draw
button. "Subclass" is a very powerful technique in Windows? programming. It
allows us to write a procedure, attach it to a window, and use it to intercept
messages sent to this window then process it. By doing this, we are able to
customize the window's behavior within the procedure.

Subclass is supported by class CWnd, so theoretically all windows (including
client window, dialog box, dialog common controls...) can be "subclassed". There
are two functions to implement subclass, one is CWnd::SubclassWindow(...),
which allows us to customize the normal behavior of a window. Here we will use
the other one: CWnd::SubclassDlgItem(...), which is specially designed to
implement subclass for the common controls contained in a dialog box.

In MFC, implementing subclass is very simple. We don't need to write a special
procedure to handle the intercepted messages. All we need to do is designing a

class as usual, adding message handlers for the messages we want to process,
and implementing the message handlers. Then we can declare a variable using
the newly designed class, and call function CWnd::SubclassDlgItem(...) to
implement subclass.

Function CWnd::SubclassDlgItem(...) has two parameters:

BOOL CWnd::SubclassDlgItem(UINT nID, CWnd *pParent);

Parameter nID indicates which control we are dealing with, and pParent is the
pointer to the control's parent window.

Class CBitmapButton uses subclass to change the default behavior of a button. If
we use automatic method to load the bitmaps, the subclass procedure is
transparent to the programmer. However, if we want to load the bitmaps by
ourselves, we must implement subclass first.

Bitmap Button

Sample 4.3\Btn demonstrates how to associate bitmaps with an owner draw
button by calling function CBitmapButton::LoadBitmaps(...). It is based on
sample 4.2\Btn. There is nothing new in this sample, except that button
IDC_PLAY is implemented differently.

In the previous samples, variable CBtnDlg::m_btnPlay is declared as a
CBitmapButton type variable. In the new sample, instead of using automatic
method to load the bitmaps, we first implement the subclass then load the
bitmaps manually in function CBitmapButton::LoadBitmaps(...):

(Code omitted)

Here, function CBitmapButton::AutoLoad(...) is replaced by three new functions.
The first function added is CWnd::SubclassDlgItem(...). The second function is
CBitmapButton::LoadBitmaps(...). This function has four parameters, which are
the bitmap IDs corresponding to button's "Up", "Down", "Focused" and
"Disabled" states respectively. They could be either string IDs or integer IDs.
The last function is CBitmap::SizeToContent(), which allows us to set bitmap
button's size to the size of the associated bitmaps. If we don't call this function,
the bitmaps may not fit well into the button.

Now we can remove or modify bitmap button IDC_PLAY's caption text "Play.
Actually, it doesn't matter if the button has caption text or not. By compiling the
application and executing it at this point, we will see that the bitmap button
implemented here is exactly the same as the one implemented in the previous
sample.

4.4 Bitmap Check Box and Radio Button: Method 2

In sample 4.2\Btn, although we can represent the checked and unchecked states
of a check box or a radio button using different bitmaps, we could not customize
their "focused" state. When a button has the current focus, a rectangle with
dashed border will always be put over button's face (Figure 4-5). This is because
we use CButton instead of CBitmapButton to implement buttons, this allows only
one bitmap to be associated with a button.

(Figure omitted)

To improve this, we can use class CBitmapButton to create both check box and
radio button. By doing this, the button's focused state will be implemented using
the bitmap image provided by the programmer instead of drawing a rectangle
with dashed border over button's face. Since class CBitmapButton supports only
push button implementation, we need to change the bitmap by ourselves to
imitate check box and radio button.

Sample 4.4\Btn is based on sample 4.3\Btn. In this sample, three new buttons
are added to the dialog template: one will be implemented as a check box; the
other two will be implemented as radio buttons. All of them will be based on
class CBitmapButton.

First, we need a Boolean type variable for each check box and radio button to
represent its current state. This variable toggles between TRUE and FALSE,
indicating if the button is currently checked or unchecked. When the state of a
button changes, we re-associate the button with an alternate bitmap and paint
the bitmap button again.

Since we use push button to implement check box and radio button, we can not
call function CButton::GetCheck(...) to examine if the button is currently
checked or not. This is because a push button will automatically resume to the
"up" state after the mouse is released.

In the sample application, three new buttons are added to the dialog template
IDD_BTN_DIALOG, and their corresponding IDs are IDC_BMP_CHECK,
IDC_BMP_RADIO_A, IDC_BMP_RADIO_B respectively. Also, they all have a
"Owner draw" style. Besides the new controls, two new bitmap resources are
also added to the application, which will be used to implement button's
"Checked" and "Unchecked" states. The IDs of the new bitmap resources are
IDB_BITMAP_BTNCHECK and IDB_BITMAP_BTNUNCHECK. The difference
between the new bitmaps and two old ones (whose IDs are IDB_BITMAP_CHECK
and IDB_BITMAP_UNCHECK) is that the new bitmaps have a 3-D effect. In
sample 4.2\Btn, the check box and radio buttons are implemented using class

CButton, which automatically adds 3-D effect to the controls. Since we want the
controls to be implemented solely by programmer-provided bitmaps, we need to
add 3-D effect by ourselves.

In the sample application, three new CBitmapButton type variables are declared
in class CBtnDlg. Also, a new member function SetRadioBitmap() is added to
associate bitmaps with the two radio buttons. This function will be called when
one of the radio buttons is clicked by mouse. For the check box, associating
bitmap with it is relatively simple, so it is implemented within the message
handler. Besides this, a new Boolean type variable CBtnDlg::m_bBmpCheck is
declared to indicate the current state of the check box, and an unsigned integer
CBtnDlg::m_uBmpRadio is declared to indicate which radio button is being
selected. For each button, WM_COMMAND message handler is added through
using Class Wizard. These message handlers are CBtnDlg::OnBmpCheck(),
CBtnDlg::OnBmpRadioA() and CBtnDlg::OnBmpRadioB() respectively. The
following code fragment shows the new members added to the class:

(Code omitted)

In the constructor of CBtnDlg, variable CBtnDlg::m_bBmpCheck is initialized to
FALSE and CBtnDlg::m_uBmpRadio is initialized to zero. This means the original
state of the check box is unchecked, and no radio button is selected:

CBtnDlg::CBtnDlg(CWnd* pParent /*=NULL*/)

: CDialog(CBtnDlg::IDD, pParent)

{

......

m_bBmpCheck=FALSE;

m_uBmpRadio=0;

}

In the dialog initialization stage, subclass is implemented for buttons, then the
corresponding bitmaps are loaded:

(Code omitted)

For each button, first we implement subclass for it, then we load the bitmap by
calling function CBitmapButton::LoadBitmaps(...). Because we provide only one

bitmap for each control, state transition of these buttons (e.g., normal state to
focused state) will not be reflected to the interface unless we add extra code to
handle it.

For check box IDC_BMP_CHECK, when it is clicked by the mouse's left button,
we need to toggle the value of variable CBtnDlg::m_bCheck, load the
corresponding bitmap and paint the button again. The following is the
WM_DOMMAND message handler for check box:

(Code omitted)

Radio buttons are slightly different. When one radio button is checked, the other
button should be unchecked. So within both CBtnDlg::OnBmpRadioA() and
CBtnDlg::OnBmpRadioB(), function CBtnDlg:: SetRadioBitmap() is called to set
bitmaps for both radio buttons:

(Code omitted)

When the user clicks one of the radio buttons, its resource ID is assigned to
variable CBtnDlg::m_uBmpRadio. Then in function CBtnDlg::SetRadioBitmap(),
this variable is compared to both radio button IDs. Bitmap
IDB_BITMAP_BTNCHECK will be associated to the button whose ID is currently
stored in variable CBtnDlg::m_uBmpRadio. For the other button, bitmap
IDB_BITMAP_BTNUNCHECK will be loaded.

The appearance of our new check box and radio buttons is almost the same with
that of old ones implemented in sample 4.2\Btn. However, here the rectangle
with dashed border will not be put over a button's face when the button has the
current focus (Figure 4-6).

(Figure omitted)

4.5 Irregular Shape Bitmap Button

Transparent Background

Up to now all the buttons created by us have a rectangular shape. It is relatively
difficult to create a button with irregular shapes (e.g., a round button). Even for
bitmap buttons, their associated bitmaps are always rectangular.

We may think that by setting the bitmap's background color to the color of the
dialog box, the bitmap button may look like a non-rectangular button. For
example, in the previous samples, button IDC_PLAY is made up of two regions:
its foreground is the triangular region, and rest area can be treated as its
background (Figure 4-7). We can change the background color to the color of

the dialog box so that this area appears transparent to us when the bitmap
button is implemented.

However, this is not the best solution. In Windows? operating system, the color
of dialog box can be customized. The user can double click "Display" icon
contained in the "Control Panel" window and set the colors for many objects,
which include title bar, backdrop..., and so on. So actually we have no way of
knowing the color of dialog box beforehand. If we implement a bitmap button
and set its background color to the dialog box color in our system, it may not
work properly in another system.

To draw a bitmap with transparent background, we need to use "mask" when
painting the bitmap. We can imagine a mask as a matrix with the same
dimension of the bitmap image, and each element in the matrix corresponds to a
pixel contained in the bitmap. The elements in the matrix may be either "0" or
"1". When we paint the bitmap, only those pixels with "0" masks are output to
the device (we can also use "1" to indicate the pixels that need to be drawn).

When programming the application, we can prepare two bitmaps of exactly the
same size: one stores the normal image, the other one stores mask. The mask
bitmap is made up of only two types of pixels: black and white. This is because
for black color, its RGB elements are all 0s; for white color, the elements are all
1s. By implementing the mask bitmap like this, the background area of the mask
bitmap is white and the foreground area is black.

Windows allows us to output the pixels of a bitmap to the target device using
different operation mode. We can copy a pixel directly to the target device, we
can also combine a pixel contained in the bitmap with the pixel contained in the
target device using various mode: bit-wise OR, AND, and XOR. For example, if
we combine red color (RGB(255, 0, 0)) with green color (RGB(0, 255, 0)) using
bit-wise AND operation, the output will be yellow color (RGB(255, 255, 0)).

When painting the bitmap, we first need to output the normal bitmap to the
target device using bit-wise XOR drawing mode, then output the mask bitmap to
the target device at the same position using bit-wise AND mode. Finally we can
output the normal bitmap again using bit-wise XOR mode. By doing this, the
output bitmap's background will become transparent.

The reason for this is simple. Before bitmap is painted, the target device may
contain a uniform color or any image pattern. After normal bitmap is first
painted, the foreground area of the target device will become the combination of
source image pattern and target image pattern. After we output mask bitmap
using bit-wise AND operation, the foreground area of the target device will
become black. This means on the target device, every pixel in the foreground
area is zero now. Since we use bit-wise XOR mode to output normal image in the

last step, and XORing anything with zero will not change the source, the
foreground area on the target device will finally contain the pattern of the source
image. For mask area, the second ANDing operation doesn't make any change to
it because ANDing a pixel with white color (all 1s) doesn't change that pixel. So
the overall operations on the mask region is equivalent to two consecutive XOR
operations, which will resume all the pixels in this region to their original colors.

However there is still a slight problem here: if we draw the source and mask
bitmaps directly to the target device using the method mentioned above, we will
see a quick flicker on the mask area of the target device. Although it lasts only
for a very short period, it is an undesirable effect. To overcome this, we can
prepare a bitmap in the memory, copy the target image pattern to this bitmap,
do the transparent painting on the memory bitmap, and copy the final result
back to the target. Since the background area of the memory bitmap has the
same pattern with the background area of the target device, this final copy will
not cause any flicker.

To customize the drawing behavior of bitmap button, we need to override
function CBitmapButton::OnDrawItem(...). For an owner-draw button, this
function will be called when a button needs to be updated. Actually, menu and
combo box also use similar functions. We can create an owner draw menu or
combo box by overriding the member functions with the same name. For these
functions, their parameters are all pointers to DRAWITEMSTRUCT type object.
This structure stores information such as button's current state (i.e. focused,
disabled), the device context that can be used to implement drawing, and the
rectangle indicating where we can output the image pattern.

New Class

Sample 4.5\Btn is based on sample 4.4\Btn, it demonstrates how to create
bitmap buttons with transparent background. In this sample, a new class
MCBitmapButton is derived from CBitmapButton. Besides the default properties
inherited from base class, the following new features are added to this class:

1) The new class handles transparent background drawing automatically.
Programmer can prepare a black-and-white mask bitmap and associate it with
the bitmap button together with other required bitmaps. The drawing will be
taken care in the member function of the class. Programmer doesn't need to add
extra code.

2) The mask bitmap can be loaded along with other images by calling either
AutoLoad(...) or LoadBitmaps(...).

3) Function AutoLoad(...) is overridden to load the mask image automatically. In
this case, the mask bitmap must have a string ID that is created by suffixing an

'M' character to button's caption text. For example, if we want to create mask
bitmap for a button whose caption text is "PLAY", the ID of the mask bitmap
must be "PLAYM". If we load the mask bitmap using automatic method, there is
no difference between using the new class and CBitmapButton.

4) Mask bitmap could also be loaded by calling function LoadBitmaps(...). The
overridden function has five parameters, the last of which is the ID of the mask
bitmap.

5) If the mask bitmap is not present, the bitmap will be output directly to the
target device using the default implementation.

In the sample, a mask bitmap "PLAYM" is added to the application. It will be
used to draw button IDC_PLAY with transparent background.

The new class derived from CBitmapButton is MCBitmapButton. In this class, a
new CBitmap type variable m_bitmapMask is added to load the mask bitmap,
also, functions AutoLoad(...) and LoadBitmaps(...) are overridden. The following
code fragment shows this new class:

(Code omitted)

Function LoadBitmaps(...) has two versions, one is used to load bitmaps with
string IDs, the other is used to load bitmaps with integer IDs. Both functions
have five parameters.

Overriding Function CBitmapButton::LoadBitmaps(...)

When overriding functions, we can utilize the features implemented by the base
class to load standard four bitmaps, and add our own code to load the mask
bitmap. The following is the implementation of function
MCBitmapButton::LoadBitmaps(...):

(Code omitted)

First we must use variable m_bitmapMask to call function
CBitmap::DeleteObject(), which is inherited from class CGdiObject. Since bitmap
is a GDI (graphics device interface) object, once it is initialized, it will allocate
some memory. If we want to initialize it again, we must first release the
previously allocated memory. Function CGdiObject::DeleteObject() can be used
for this purpose.

Next we call function CBitmapButton::LoadBitmaps(...) to load the default four
bitmaps, and see if the mask bitmap is available. If so, we use m_bitmapMask to
load the mask bitmap.

Overriding Function CBitmapButton::AutoLoad(...)

In member function MCBitmapButton::AutoLoad(...), the bitmap resource IDs
are obtained by suffixing 'U', 'D', 'F', 'X' or 'M' to button's caption text. With the
resource IDs, function MCBitmapButton:: LoadBitmaps(...) is called to load the
relevant bitmaps:

(Code omitted)

The caption text of the button can be retrieved by calling function
CWnd::GetWindwoText(...). Actually, every window can have a caption text,
which can be an empty string, or any text. We can use this function to retrieve
the caption text of any window, for example, a title tar.

We need to call functions CWnd::SubclassDlgItem(...) and
CBitmapButton::SizeToContent() to change the button's default properties.
Actually, the above two functions are also called in function
CBitmapButton::AutoLoad(...).

Overriding Function CBitmapButton::DrawItem(...)

Then we need to implement MCBitmapButton::DrawItem(...). In this member
function, we need to check the current state of button, and choose appropriate
bitmaps for painting button's face.

Class CBitmapButton has four CBitmap type variables: m_bitmap, m_bitmapSel,
m_bitmapFocus and m_bitmapDisabled, which are used to store the standard
four bitmaps. Because they are not declared as private members, we can access
them from the derived classes and use them to paint the button.

The only parameter of function CBitmapButton::DrawItem(...) is a pointer to a
DRAWITEMSTRUCT type object. When overriding this function, we need to use
four members contained in DRAWITEMSTRUCT: itemState, which indicates the
current state of the button; hDC, which is the handle to the target device
context; rcItem, which is the rectangle specifies the position and size of the
output area. Besides these, we also need to check the following bits of member
itemState: ODS_SELECTED, ODS_FOCUS, ODS_DISABLED, which indicate if the
current state of button is "selected", "focused" or "disabled".

At the beginning of the overridden function, we need to declare several CBitmap
and CDC type variables or pointers, all of which are used for bitmap drawing:

(Code omitted)

Three DCs are declared here. To draw a bitmap, we must create a memory DC,
select the bitmap into it and copy the bitmap from the memory DC to the target
DC. The target could be either a device or a memory block (we could copy
bitmap between two memory DCs). A DC can select only one bitmap at any
time.

When there is no mask bitmap, variable memDC is used to perform normal
bitmap drawing: it is used to select the normal bitmap, and copy it directly to
the target DC. When there is a mask bitmap, memDC will be used along with
memDCMask to implement transparent background drawing.

Variable memDCImage is used to act as the target memory DC and implement
transparent background drawing. It will be used in conjunction with bmpImage,
which will be selected into memDCImage. To draw the bitmap, first we need to
copy the image pattern from the target device to the memory bitmap, then copy
the source bitmap to the memory bitmap (perform AND and XOR drawings).
Finally, we can output the result from the memory bitmap to the target device.

Variable bmpImage is used to create bitmap in memory.

Variable memDCMask is used to select mask bitmap image.

Pointer pDC will be used to store the pointer of the target device context that is
created from hDC member of structure DRAWITEMSTRUCT.

Pointers pBitmap and pBitmapMask will be used to store the pointers to the
normal bitmap (could be one of the bitmaps indicating the four states of the
button) and the mask bitmap respectively.

The other three CBitmap pointers pOld, pOldMask and pOldImage are used to
select the bitmaps out of the DCs (When the bitmaps are being selected into the
DCs, these pointers are used to store the bitmaps selected out of the DCs. After
bitmap drawing is finished, we can select old bitmaps back into the DCs, this will
select our bitmaps out of the DCs automatically).

Variable state is used to store the current state of button.

The following portion of function MCBitmapButton::DrawItem(...) shows how to
choose appropriate bitmaps:

(Code omitted)

First pBitmap is assigned the address of variable m_bitmap, which holds the
default bitmap. Then we check if the mask bitmap exists, if so, we assign its
address to pBitmapMask. The current state of the button is read into variable

state, whose ODS_SELECTED, ODS_FOCUS and ODS_DISABLED bits are
examined in turn. If any of them is set, the corresponding bitmap's address will
be stored in pBitmap.

The following portion of this function creates the memory DCs and selects
relative bitmaps into different DCs:

(Code omitted)

First, the address of the target DC is obtained from the DC handle by calling
function CDC:: FromHandle(...). Then the memory DC that will select source
image is created by calling function CDC::CreateCompatibleDC(...). Since the
bitmap could be copied only between compatible DCs, each time we create a
memory DC, we need to make sure that it is compatible with the target DC.
Next, if the mask bitmap exists, we create three DCs: memDC for normal
bitmap, memDCMask for mask bitmap and memDCImage for memory target
bitmap (It will act as temparory target device DC). In this case, we also create a
memory bitmap using variable bmpImage, which is selected into memDCImage
(This bitmap must also be compatible with the DC that will select it). In the
above implementation, we call function CBitmap::GetBitmap(...) to obtain the
dimension information of a bitmap and call function
CBitmap::CreateCompatibleBitmap(...) to create compatible memory bitmap).
The mask bitmap is selected into memDCMask. The normal bitmap is always
selected into memDC.

The following portion of function MCBitmapButton::DrawItem(...) draws the
bitmap by copying normal and mask bitmaps among different DCs:

(Code omitted)

Bitmap copy is implemented by calling function CDC::BitBlt(...). This function
will copy the selected bitmap from one DC to another. If there is no mask
bitmap, we copy the normal bitmap (selected by memDC) directly to the target
DC (pointed by pDC). Otherwise, first we copy the image pattern from the target
device (pDC) to memory bitmap (selected by memDCImage). Then we copy
normal bitmap and mask bitmap (selected by memDC and memDCMask) to this
memory bitmap three times, using different operation modes, and copy the final
result to the target DC (pDC). At last, we select the bitmaps out of DCs.

Using Class MCBitmapButton

In sample 4.5\Btn, automatic method is used to load the mask bitmap. There
are two differences between this sample and sample 4.4\Btn. First, in the new
sample, a new bitmap resource "PLAYM" is added to the application that is used
as the mask bitmap. Second, variable CBtnDlg::m_btnPlay is declared using

MCBitmapButton instead of CBitmapButton (Also, we need to include the header
file of MCBitmapButton). No other change is needed.

With the above implementation, the button will have a transparent background.
We can test this by re-configuring the system colors.

4.6 Making Button Aware of Mouse Position

By now no button we've made could provide us with information of mouse
position when it is pressed. Although most of the time it is not necessary to
know the exact coordinates of the mouse cursor, it may help us create more
powerful buttons if we have this information. For example, we can create a
bitmap button with four arrows pointing to different directions. When the user
clicks mouse on different arrows, we can let different commands be executed if
we know the current cursor position.

Since class CButton is derived from CWnd, and CWnd handles different types of
mouse events, we should be able to trap mouse related messages into the
member functions of CButton. Actually, all classes derived from CWnd can trap
mouse events such as left button down, left button up, left button double click,
etc. In order to implement the button described above, we need to trap left
button up message, which is defined as WM_LBUTTONUP under Windows.

Sample 4.6\Btn demonstrates how to handle mouse-related message for a
button. It is based on sample 4.6\Btn, with a new button added to the
application. The new button has four arrows pointing to different directions, if
the user clicks on any of the arrows, a message box will pop up displaying a
different message (Figure 4-8).

(Figure omitted)

Trapping Message WM_LBUTTONUP within Button

In the sample, WM_LBUTTONUP message handler is added to class
MCBitmapButton. Like trapping any other type of message, in order to handle
WM_LBUTTONUP, we need to declare an afx_msg type function and add
message mapping macros. If the class is created by Class Wizard, this procedure
could be very easy. Otherwise, we must add everything manually.

First we need to declare an afx_msg type member function in the class:

class MCBitmapButton : public CBitmapButton

{

......

protected:

......

afx_msg void OnLButtonUp(UINT, CPoint);

......

DECLARE_MESSAGE_MAP()

};

There must be a DECLARE_MESSAGE_MAP macro in the class in order to let it
support message mapping.

The message mapping macros are added to the implementation file as follows:

BEGIN_MESSAGE_MAP(MCBitmapButton, CBitmapButton)

ON_WM_LBUTTONUP()

END_MESSAGE_MAP()

Message WM_LBUTTONUP will be trapped to member function
MCBitmapButton::OnLButtonUp(...), which has the following format:

void MCBitmapButton::OnLButtonUp(UINT nFlags, CPoint point)

{

}

We see that the mouse position is passed to parameter point of this function.

Because the commands are generally handled in the parent window of the
button, we need to resend mouse clicking information from the button to class
CBtnDlg. In the sample application, this is implemented through sending a user-
defined message.

User-Defined Message

User defined messages can be treated the same with other standard Windows
messages: they can be sent from one window to another, and we can add
message handlers for them. All user-defined messages must have a message ID
equal to or greater than WM_USER.

In the sample, a new message WM_BTNPOS is defined in file "MButton.h":

#define WM_BTNPOS WM_USER+1000

By doing this, WM_BTNPOS becomes a message that can be used in the
application. Please note that this message can not be sent to other applications.
If we want to send user-defined message among different applications, we need
to register that message to the system.

In function MCBitmapButton::OnLButtonUp(...), user defined message
WM_BTNPOS is sent to the parent window, with the current mouse position
stored in LPARAM parameter:

(Code omitted)

First the default implementation of function OnLButtonUp(...)is called. Then a
CWnd type pointer of parent window is obtained by calling function
CWnd::GetParent(). Class CWnd has several member functions that can be used
to send Windows? message, the most commonly used ones are CWnd::
SendMessage(...) and CWnd::PostMessage(...). The difference between the two
functions is that after sending out the message, CWnd::SendMessage(...) does
not return until the message has been processed by the target window, and
CWnd::PostMessage(...) returns immediately after the message has been sent
out. In the sample, function CWnd::PostMessage(...) is used to send
WM_BTNPOS message.

All messages in Windows have two parameters, WPARAM and LPARAM. For
Win32 applications, both WPARAM and LPARAM are 32-bit integers. They can be
used to send additional information.

In MFC, usually message parameters are passed as arguments to message
handlers, so they are rarely noticed. For example, for message
WM_LBUTTONDOWN, its WPARAM parameter is used to indicate if any of CTRL,
ALT, or SHIFT key is held down when the mouse button is up. In the message
handler, this information is mapped to the first parameter of
CWnd::OnLButtonUp(...). Again, its LPARAM parameter contains the information
of current mouse position, which is mapped to the second parameter of
CWnd::OnLButtonUp(...). Both CWnd::SendMessage(...) and
CWnd::PostMessage(...) have three parameters, the first of which specifies
message ID, and the rest two are WPARAM and LPARAM parameters. If we don't

want to send additional message, we can pass 0 to both of them.

In the sample, we need to use both parameters: the parent window needs to
know the control ID of the button; also, it needs to know the current mouse
position.

The button's ID can be retrieved by calling function CWnd::GetDlgCtrlID(), it will
be sent through WPARAM parameter to the button's parent. The x and y
coordinates of mouse cursor can be combined together to form an LPARAM
parameter by using MAKELPARAM macro. Here, macro MAKELPARAM can
combine two 16-bit numbers to form a 32-bit message. If we provide two 32-bit
numbers, only the lower 16 bits will be used (Of course, screen coordinates
won't use more than 16 bits).

The message is received and processed in class CBtnDlg. In MFC, general
message can be mapped to a member function by using ON_MESSAGE macro.
This type of message handler has two parameters, one for receiving WPARAM
information and the other for receiving LPARAM information. Also, it must return
a LONG type value.

The following code fragment shows how member function OnBtnPos(...) is
declared in class CBtnDlg (It will be used to receive WM_BTNPOS message):

class CBtnDlg : public CDialog

{

......

protected:

......

afx_msg LONG OnBtnPos(UINT, LONG);

DECLARE_MESSAGE_MAP()

};

In the implementation file, ON_MESSAGE macro is added as follows:

BEGIN_MESSAGE_MAP(CBtnDlg, CDialog)

......

ON_MESSAGE(WM_BTNPOS, OnBtnPos)

END_MESSAGE_MAP()

The control ID and the mouse information can be extracted within the message
handler as follows:

(Code omitted)

Sample

Sample 4.6\Btn has a four-arrow bitmap button. First a button resource is added
to the dialog template, whose ID is IDC_PLAY_POS and caption text is
"PLAYPOS" (bitmaps will be loaded through automatic method). Two new bitmap
resources "PLAYPOSU" and "PLAYPOSD" are also added to the application, which
will be used to draw button's "up" and "down" states.

We need to know the sizes and the positions of four arrows within the bitmap
button so we can judge if the mouse cursor is over any of the arrows. Within
class CBtnDlg, a CRect type array with size of 4 is declared for this purpose.
Their values are initialized in function CBtnDlg::OnInitDialog(). Also an
MCBitmapButton type variable m_btnPlayPos is declared to implement this new
button:

class CBtnDlg : public CDialog

{

......

protected:

......

MCBitmapButton m_btnPlayPos;

......

CRect m_rectBtnPos[4];

......

};

The following portion of function CBtnDlg::OnInitDialog() shows how array
m_rectBtnPos is initialized:

(Code omitted)

Here, we call function CWnd::GetClientRect() to retrieve the button size. We
need to calculate the sizes and positions of the arrows after bitmaps have been
loaded. This is because a button will be resized according to the bitmap size
after it is initialized.

Function CBtnDlg::OnBtnPos(...) is implemented just for the purpose of
demonstration: if any of the four arrows is pressed, a message box will pop up
displaying a different message:

(Code omitted)

The application is now ready for compile. Based on this method, we can
implement bitmap buttons with more complicated functionality.

4.7 Mouse Sensitive Button

Setting Capture

In this section, we are going to create a very special button. It is not a push
button, nor a check box or radio button. The button has two states: normal and
highlighted. Generally, the button will stay in normal state. When the mouse
cursor is within the button's rectangle (with no mouse button being clicked), the
button will become highlighted, and if the mouse moves out of the rectangle, the
button will resume to normal state.

To implement this type of button, we need to trap mouse messages and
implement handlers. One of the messages we need to handle is
WM_MOUSEMOVE, which will be sent to a window if the mouse cursor is moving
over the button. We need to respond to this message and set button's state to
"highlighted" when the mouse cursor first comes into the button's rectangle.
From now on, we need to keep an eye on the mouse's movement, if the mouse
moves out of the rectangle, we need to resume button's normal state.

However, since message WM_MOUSEMOVE will only be sent to a window when
the mouse cursor is within it, it is difficult to be informed of the event that
mouse has just left the button's window. This is because once the mouse leaves,
the button will not be able to receive WM_MOUSEMOVE message anymore.

To help us solve this type of problems, Windows? provides a technique that can

be used to track mouse's activities after it leaves a window. This technique is
called Capture. By using this method, we could capture all the mouse-related
messages to one specific window, no matter where the mouse is.

We can call function CWnd::SetCapture() to set capture for a window. The
capture can also be released by calling function ::ReleaseCapture(), which is a
Win32 API function. Besides using this function, the capture can also be removed
by the operating system under certain conditions. If this happens, the window
that is losing capture will receive a WM_CAPTURECHANGED message.

New Class

Sample 4.7\Btn demonstrates how to implement "mouse sensitive button". In
the application, a new class MCSenButton is created for this purpose, and is
defined as follows:

(Code omitted)

The class contains only a constructor, two message handlers, and a Boolean type
variable m_bCheck. Variable m_bCheck will be used to indicate the button's
current state: it is TRUE if the button is currently highlighted, and is FALSE if the
button is in the normal state. Within the constructor, this variable is initialized to
FALSE:

MCSenButton::MCSenButton() : MCBitmapButton()

{

m_bCheck=FALSE;

}

Functions MCSenButton::OnMouseMove(...) and
MCSenButton::OnCaptureChanged(...) are message handlers for
WM_MOUSEMOVE and WM_CAPTURECHANGED respectively. Like all other types
of messages, their message mapping macros should be added in the
implementation file:

IMPLEMENT_DYNAMIC(MCSenButton, MCBitmapButton)

BEGIN_MESSAGE_MAP(MCSenButton, MCBitmapButton)

ON_WM_MOUSEMOVE()

ON_WM_CAPTURECHANGED()

END_MESSAGE_MAP()

Here, ON_WM_MOUSEMOVE and ON_WM_CAPTURECHANGED are message
mapping macros defined by MFC.

The following two functions handle above two messages:

(Code omitted)

In function MCSenButton::OnMouseMove(...), if m_bCheck is FALSE, it means
the button is in the normal state. In this case, we need to set mouse capture,
change the button to "highlighted" state, and redraw the button. If the button is
currently highlighted, we need to check the current position of mouse cursor, if it
has moved out of the button window, we should resume button's normal state,
and redraw the button. Here, CButton::SetState(...) is used to set the button to
different states (it will cause the bitmap button to use the corresponding
bitmap), and CWnd::Invalidate() is used to cause the button to be redrawn.

In function MCSenButton::OnCaptureChanged(...), we need to change
m_bCheck back to FALSE, and resume button's normal state.

Implementation

In the sample, four new buttons are added to the application. The IDs of these
new buttons are IDC_MOUSE_SEN_1, IDC_MOUSE_SEN_2, IDC_MOUSE_SEN_3
and IDC_MOUSE_SEN_4 respectively. An MCSenButton type array m_btnBmp
(The array size is 4) is declared in class CBtnDlg and initialized in function
CBtnDlg::OnInitDialog() as follows:

(Code omitted)

Here, we use subclass instead of automatic method to load bitmaps. Also, we
use IDB_BITMAP_BTNUNCHECK and IDB_BITMAP_BTNCHECK to implement
button's normal and highlighted states respectively.

Because mouse related messages are handled within the member functions of
class MCSenButton, once we declare variables within it, the buttons will
automatically become mouse sensitive. There is no need for us to write extra
code for handling mouse messages outside the class.

Summary

1) We can use class CBitmapButton to implement bitmap buttons. To use this
class, we need to prepare 1 to 4 bitmap resources indicating button's different
states, then use class CBitmapButton to declare variables, and call either
CBitmapButton::AutoLoad(...) or CBitmapButton::LoadBitmaps(...) to associate
the bitmap resources with the buttons.

2) To use function CBitmapButton::AutoLoad(...), the bitmap resources must
have string IDs, and must be created by suffixing 'U', 'D', 'F' or 'X' to the
button's caption text.

3) Buttons, check boxes and radio buttons implemented by class CButton can
display user-provided bitmaps by calling function CButton::LoadBitmap(...). With
this method, the button could be associated with only one image at any time.
Also, its focused state will be indicated by drawing a dash-bordered rectangle
over button's face.

4) We can call function CBitmapButton::LoadBitmaps(...) at any time to change
the associated bitmaps. This provides us a way of implementing check box and
radio button using push button.

5) Irregular shape button can be implemented by drawing images with
transparency. We can prepare a normal image and a black-and-white mask
image. When drawing the button, only the unmasked region of the normal image
should be output to the target device.

6) A button can handle mouse-related messages. If we want to know the mouse
position when a button is being pressed, we can trap WM_LBUTTONUP message.

7) We can implement mouse sensitive button by handling WM_MOUSEMOVE
message and setting window capture.

BACK TO INDEX

Chapter 5 Common Controls
In this chapter we will discuss some common controls that can be included in a
dialog box. These controls include spin control, progress bar control, slider
control, tree control, tab control, animate control and combo box. These controls
can all be included in a dialog template as resources. Besides, all the controls
have corresponding MFC classes that can be used to implement them.

In Developer Studio, Class Wizard has some features that can be used to add
member variables and message handlers for the common controls. This simplifies
the procedure of writing source code.

5.1 Spin Control

Spin control is a rectangular button with two arrows pointing to opposite
directions (either vertically or horizontally), it is one of the most commonly used
controls in a dialog box. Usually a spin is used together with another control, in
most cases this control is an edit box (Though not common, this control can also
be a button or a static control). By clicking on one of the arrows, the contents in
the accompanying control will change accordingly indicating current position of
the spin control.

The control used together with the spin control is called spin's Buddy Control. In
MFC, it is very easy to use spin control along with edit box, they are specially
designed to cooperate together.

Using Spin Control with Edit Box

By default, a spin control should be associated with an edit box. Usually this type
of edit box contains a number indicating the current position of spin. If we make
no modification, the range of this number will be from 0 to 100. If the spin's
orientation is vertical, pressing the downward arrow will cause the number to
increment. If the spin's orientation is horizontal, pressing the leftward arrow will
have the same effect.

When adding a spin control resource, we must set several styles in order to make
it work correctly. In the property page whose caption is "Spin properties", by
clicking "Styles" tab, we will see all the customizable styles (Figure 5-1). Here,
style "Auto buddy" will allow spin's buddy to be automatically selected (By

enabling this style, we do not need to set spin's buddy within the program). If we
check this selection, the window prior to the spin control in the Z order will be
used as the spin's buddy window.

(Figure 5-1 omitted)

To let buddy window be automatically selected, we must first add resource for
the buddy control then resource for the spin control. For example, if we want to
use an edit box together with a spin control, we can add edit box resource first,
then add spin control next. We can check controls' Z order by executing
command Layout | Tab order (or pressing CTRL+D keys). The Z-order of the
controls can be reordered by clicking them one by one according to the new
sequence.

In the left-bottom corner of "Spin properties" property sheet, there is a combo
box labeled "Alignment". This allows us to specify how the spin will be attached
to its buddy window when being displayed. If we select "Unattatched" style, the
spin and the buddy control will be separated. Usually we select either "Left" or
"Right" style to attach the spin to the left or right side of the buddy control. In
this case, the size and position of the spin control in the dialog template has no
effect on its real size and position in the runtime, its layout will be decided
according to the size and position of the buddy control.

Also, there is a "Set buddy integer" check box. If this style is set, the spin will
automatically send out message to its buddy control (must be an edit box) and
cause it to display a series of integers when the spin's position is changed. By
default, the integer contained in the edit box will increment or decrement with a
step of 1. If we want to customize this (For example, if we want to change the
step or want to display floating point numbers), we should uncheck this style and
set the buddy's text within the program.

Sample 5.1-1\CCtl demonstrates how to use spin control with edit control and set
buddy automatically. The sample is a standard dialog based application
generated by Application Wizard, with all default settings. The resource ID of the
main dialog template is IDD_CCTL_DIALOG, which contains two spin controls and
two edit boxes. Both spins have "Auto buddy" and "Set buddy integer" styles.
Also, their alignment styles are set to "Right" (Figure 5-2).

(Figure 5-2 omitted)

Without adding a single line of code, we can compile the project and execute it.
The spin controls and the edit controls will work together to let us select integers
(Figure 5-3).

(Figure 5-3 omitted)

In MFC, spin control is implemented by class CSpinButtonCtrl. We need to call
various member functions of this class in order to customize the properties of the
spin control. In sample 5.1-2\CCtl, the control's buddy is set by calling function
CSpinButtonCtrl::SetBuddy(...) instead of using automatic method. The best
place to set a spin's buddy is in the dialog box's initialization stage. This
corresponds to calling function CDialog::OnInitDialog().

Sample 5.1-2\CCtl is based on sample 5.1-1\CCtl. Here, style "Auto buddy" is
removed for two spin controls. Also, some changes are nade to set the spin
buddies manually.

There are two ways of accessing a specific spin: we can use a spin's ID to call
function CWnd::GetDlgItem(...), which will return CWnd type pointer to the spin
control; or we can add a CSpinButtonCtrl type variable for the spin control
(through using Class Wizard). The following code fragment shows how the buddy
of the two spin controls are set using the first method:

(Code omitted)

Since CWnd::GetDigItem(...) returns a CWnd type pointer, we need to first cast
it to CSpinButtonCtrl type pointer in order to call any member function of class
CSpinButtonCtrl. The only parameter that needs to be passed to function
CSpinButtonCtrl::SetBuddy(...) is a CWnd type pointer to the buddy control,
which can also be obtained by calling function CWnd::GetDlgItem(...).

Spin controls implemented in sample 5.1-2\CCtl behaves exactly the same with
those implemented in sample 5.1-1\CCtl.

5.2 Customizing the Properties of Spin Control

We can customize a spin control's properties in function CDialog::OnInitDialog().
The following three functions are the most commonly used ones for doing
customization:

(Table omitted)

Sample 5.2\CCtl is based on sample 5.1-1\CCtl. In this sample, the vertical spin
is customized to display hexadecimal integers, whose range is set from 0x0 to
0xC8 (0 to 200), and its initial position is set to 0x64 (100). The horizontal spin
still displays decimal integers, its range is from 50 to 0, and the initial position is
25. The following portion of function CCCtlDlg::OnInitDialog() shows the newly
added code:

(Code omitted)

5.3 Displaying Text Strings in the Buddy Window

Sometimes we want the buddy to display text strings rather than numerical
numbers. For example, we may prefer the text displayed in the buddy window to
be "One", "Two", "Three"... rather than "1", "2", "3".... To customize this style,
we could not use "Set buddy integer" style anymore. Instead, we need to write
our own message handlers and set the buddy control's text by ourselves.

When the position of a spin has changed, the parent window of the spin control
will receive a UDN_DELTAPOS message. From this message, we can get the
current position of the spin control, along with the proposed change to the
current position. Based on this information, we can decide what we should
display in the buddy control window.

Sample 5.3\CCtl demonstrates how to display text strings in a buddy window. It
is based on sample 5.2\CCtl, with a new spin control IDC_SPIN_STR and an edit
box IDC_EDIT_STR added to the application. The edit control will display text
strings "Zero", "One", "Two",..., "Nine" instead of integers. The buddy of spin
IDC_SPIN_STR is set automatically.

The UDN_DELTAPOS message handler can be added through following steps: 1)
Invoke Class Wizard, click "Messages Maps" tab. 2) Select "CCCtlDlg" class from
"Class name" window, then highlight "IDC_SPIN_STR" in "Object IDs" window. 3)
There will be two messages contained in "Messages" window, we need to
highlight "UDN_DELTAPOS" and press "Add function" button. The newly added
function will look like follows:

void CCCtlDlg::OnDeltaposSpinStr(NMHDR* pNMHDR, LRESULT* pResult)

{

NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;

*pResult = 0;

}

The first parameter here is a NMHDR type pointer. This is a structure that
contains Windows(notification messages. A notification message is sent to the
parent window of a common control to notify the changes on that control. It is
used to handle events such as mouse left button clicking, left button double
clicking, mouse right button clicking, and right button double clicking performed
on a common control. Many types of common controls use this message to notify
the parent window. For spin control, after receiving this message, we need to
cast the pointer type from NMHDR to NM_UPDOWN. Here structure MN_UPDOWN

is defined as follows:

typedef struct _NM_UPDOWN { nmud

NMHDR hdr; // notification message header

int iPos; // current position

int iDelta; // proposed change in position

} NM_UPDOWNW;

In the structure, member iPos specifies the current position of the spin control,
and iDelta indicates the proposed change on spin's position. We can calculate the
new position of the spin control by adding up these two members.

The following function shows how the buddy's text is set after receiving the
message:

(Code omitted)

The buddy's text is set by calling function CWnd::SetWindowText(...). Here
variable szNumber is a two- dimensional character array which stores strings
"Zero", "One", "Two"..."Nine". First we calculate the current position of the spin
control and store the result in an integer type variable nNewPos. Then we use it
as an index to table szNumber, find the appropriate string, and use it to set the
text of the edit control.

In dialog box's initialization stage, we need to set the range and position of the
spin control. Since the edit box will display nothing by default, we also need to
set its initial text:

(Code omitted)

With the above implementation, the spin's buddy control will display text instead
of numbers.

5.4 Bitmap Button Buddy

String text is not the only appearance a buddy control can have. We can also
implement a buddy that displays bitmaps. Because bitmap button can be easily
implemented to display images, we can use it to implement spin's buddy control
rather than using edit box.

Sample 5.4\CCtl demonstrates how to implement bitmap button buddy. It is

based on sample 5.3\CCtl, with a new spin control IDC_SPIN_BMP and a new
bitmap button IDC_BUTTON_BMP added to the application.

The procedure of creating a bitmap button buddy is almost the same with
creating an edit box buddy. The only difference here is that instead of creating an
edit box resource, we need to add a button resource, and set its "Owner draw"
style.

In the sample, four bitmaps are prepared to implement the bitmap button. All of
them have integer resource IDs, which are listed as follows:
IDB_BITMAP_SMILE_1, IDB_BITMAP_SMILE_2, IDB_BITMAP_SMILE_3,
IDB_BITMAP_SMILE_4.

A CBitmapButton type variable is declared in class CCCtlDlg. In the dialog box's
initialization stage, functions CWnd::SubclassDlgItem(...),
CBitmapButton::LoadBitmaps(...) and CBitmapButton:: SizeToContent() are
called to initialize the bitmap button. Also, the range of the spin control is set
from 0 to 3, and its initial position is set to 0:

(Code omitted)

The initially selected bitmap is IDC_BITMAP_SMILE_1. We should not load
bitmaps for other states ("down", "focused" and "disabled") because the purpose
of this button is to display images rather than executing commands. We need to
change the currently loaded image upon receiving UDN_DELTAPOS notification.
To change button's associated bitmap, in the sample application, a
UDN_DELTAPOS message handler is added for IDC_SPIN_BMP, which is
implemented as follows:

(Code omitted)

Although we say that the bitmap button is the buddy of the spin control, in the
above implementation we see that they do not have special relationship. A spin
control needs a buddy only in the case when we want the text in the buddy
window to be updated automatically. If we implement this in UDN_DELTAPOS
message handler, the buddy loses its meaning because we can actually set text
for any control. Although this is true, here we still treat the bitmap button as the
buddy of spin control because the bitmap button is under the control of the spin.

5.5 Slider

A slider is a control that allows the user to select a value from pre-defined range
using mouse or keyboard. A slider can be customized to have many different

styles: we can put tick marks on it, set its starting and ending ranges, make the
tick marks distributed linearly or non-linearly. Besides these attributes, we can
also set the line size and page size of a slider, which decide the minimum
distance the slider moves when the user clicks mouse on slider's rail or hit arrow
keys of the keyboard.

Including Slider Control in the Application

Sample 5.5\CCtl demonstrates how to use the slider control. It is a standard
dialog based application generated by the Application Wizard. In the dialog box,
three different sliders are implemented, they are used to show how to set tick
marks, page size, line size, and implement other customizations.

The tick marks can be added to the slider automatically. When we add a slider
resource to the dialog template, we can find two check boxes, "Tick mark" and
"Auto ticks", in the property page that lets us customize slider's properties
(Figure 5-4). If we check the former check box, the slider will be able to have tick
marks, if we check the latter, tick marks will be added automatically.

(Figure 5-4 omitted)

In MFC, slider can be implemented through using class CSliderCtrl. We need to
call its member functions in order to customize the slider.

To let the tick marks be set automatically, besides setting "Tick mark" and "Auto
ticks" styles, we must also specify slider's range. A slider's range can be set by
calling either function CSliderCtrl:: SetRange(...) alone or
CSliderCtrl::SetRangeMin(...) together with CSliderCtrl::SetRangeMax(...)in the
dialog box's initialization stage. The format of the above three functions are listed
as follows:

void CSliderCtrl::SetRange(int nMin, int nMax, BOOL bRedraw = FALSE);

void CSliderCtrl::SetRangeMax (int nMax, BOOL bRedraw = FALSE);

void CSliderCtrl::SetRangeMin(int nMin, BOOL bRedraw = FALSE);

By default, the distance between two neighboring tick marks is 1. To change this,
we may call function CSliderCtrl::SetTicFreq(...) to set the frequency of the tic
marks. If the slider does not have "Auto ticks" style, we must call function
CSliderCtrl::SetTic(...) to set tick marks for the slider. Because this function
allows us to specify the position of a tic mark, we can use it to set non-linearly
distributed tic marks.

Two other properties that can be modified are slider's page size and line size.

Here, page size represents the distance the slider will move after the user clicks
mouse on its rail. The line size represents the distance the slider will move if the
user hits left arrow or right arrow key when the slider has the current focus
(Figure 5-5). Two member functions of class CSliderCtrl can be used to set the
above two sizes: CSliderCtrl::SetPageSize(...) and CSliderCtrl::SetLineSize(...).
The default page size is 1/5 of the total slider range and the default line size is 1.

In sample 5.5\CCtl, there are three sliders, whose IDs are
IDC_SLIDER_AUTOTICK, IDC_SLIDER_TICK and IDC_SLIDER_SEL respectively.
Here, slider IDC_SLIDER_AUTOTICK has "Tick marks" and "Auto ticks" styles,
slider IDC_SLIDER_TICK has only one "Tick marks" style, and slider
IDC_SLIDER_SEL has "Tick marks", "Auto ticks", and "Enable selection" styles.

Three sliders are initialized in function CCCtlDlg::OnInitDialog(). The following
portion of this function sets the range, tick marks, page size and line size for
each slider:

(Code omitted)

Since slider IDC_SLIDER_AUTOTICK has "Auto ticks" style, we don't need to set
the tick marks. In the sample, the range of this slider is set from 0 to 10, and the
tick mark frequency is set to 2. The tick marks will appear at 0, 2, 4, 6... 10.
Also, since no page size and line size are specified here, they will be set to the
default values (2 and 1). For IDC_SLIDER_TICK, its range is set from 0 to 50,
and function CSliderCtrl::SetTic(...) is called to set non-linearly distributed tick
marks. Here, a loop is used to set all the tick marks, which will appear at 0, 4, 8,
16.... Slider IDC_SLIDER_SEL also has "Auto ticks" style, its range is set from 50
to 100, page size set to 40 and line size set to 10. This slider also has "Enable
selection" style, and function CSliderCtrl::SetSelection(...) is called to draw a
selection on the slider's rail. The range of the selection is from 60 to 90.

Handling Slider Related Messages

Another feature we want to add to the application is trapping events generated
by the sliders. When a slider moves, we may want to know its current position
and make changes to other settings. For example, in a multimedia application,
we can use slider to control the volume of speakers.

In Windows(system, there is no special message defined for the slider. Instead,
a slider shares same messages with scroll bar. For horizontal sliders, we need to
trap WM_HSCROLL message; for vertical sliders, we need to trap WM_VSCROLL
message.

Similar to UDN_DELTAPOS message, in a dialog box, message WM_HSCROLL or
WM_VSCROLL can be added through using Class Wizard. The default message

handler for WM_HSCROLL will look like this:

void CCCtlDlg::OnHScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{

CDialog::OnHScroll(nSBCode, nPos, pScrollBar);

}

There are three parameters in this function. The first parameter nSBCode
indicates user's scrolling request, which includes left-scroll, right-scroll, left-page-
scroll, right-page-scroll, etc. If we want to customize the behavior of a slider, we
need to check this parameter. Parameter nPos is used to specify the current
slider's position under some situations (it is not valid all the time). The third
parameter pScrollBar is a window pointer to slider or scroll bar control. We can
use it to check which slider is being changed, then make the corresponding
response. The slider's current position can be obtained by calling function
CSliderCtrl::GetPos(). In the sample application, since all sliders are horizontal,
only WM_HSCROLL message is handled:

(Code omitted)

Function CWnd::GetDlgCtrlID() is called to retrieve the control ID of the slider.
We use this ID to call function CWnd::GetDlgItem(...) and get the address of
slider control. If the control happens to be one of our sliders, we call function
CSliderCtrl::GetPos() to retrieve its current position, and output the slider ID
along with its current position to the debug window. In order to see the activities
of the sliders, the application must be executed in the debug mode within
Developer Studio.

5.6 List Box

List box is a control that contains a list of objects such as file names and strings
that can be selected by mouse clicking. When we create a list box, there are
many styles that can be customized (Figure 5-6). For example, if we check
"Horizontal scroll" style, the list box will automatically implement a horizontal
scroll bar if any of its string is too long to be fully displayed in the list window. If
we check "Vertical scroll" style, the list box will add a vertical scroll if the vertical
size of the list box is not big enough for displaying all items. Some other
important styles that a list box can have are "Multi-column", "Sort", "Selection"
and "Owner draw".

(Figure 5-6 omitted)

Usually a list box has a single column. If we set "Multi-column" style, the list box
can have multiple horizontal columns. Originally the list box will be empty, when
we start to add new items, they will be added to the first column (column 0). If
the first column is full, instead of creating a vertical scroll bar and continue to add
items to this column, the list box will create a new column and begin to fill it. This
step will be repeated until all items are filled into the list box. Here, the width of
each column is always the same. Because a multiple-column list box will always
try to extend horizontally rather than vertically, it is important to let this type of
list box have a horizontal scroll bar.

The "Sort" style will be set by default. If we remain this style, all the strings
contained in the list box will be alphabetically sorted. For the "Selection" styles,
we have several choices. A "Single" style list box allows only one item in the list
box to be selected at any time. A "Multiple" style list box allows several items to
be selected at the same time. If we enable this style, the user can use SHIFT and
CTRL keys together to select several items. Besides these two, there is also an
"Extended" style. If we enable it, the items can be selected or deselected through
mouse dragging. Finally, list box with "Owner draw" style allows us to implement
it so that the list box can contain non-string items. In this case, we need to
provide custom list box interface.

Sample 5.6\CCtl demonstrates basic styles of list box. It is a dialog-based
application created by Application Wizard. There are three list boxes implemented
in the application, whose IDs are IDC_LIST, IDC_LIST_MULCOL and
IDC_LIST_DIR respectively. The styles of IDC_LIST are all set to default, it is a
single selection, single column, sorted list box with a vertical scroll bar. The
styles of IDC_LIST_MULCOL are multiple-column, multiple-selection, it does not
support sort. The styles of IDC_LIST are also set to default, except that it
supports "extended selection" style. To access these list boxes, three CListCtrl
type member variables m_listBox, m_listMCBox and m_listDir are declared in
class CCtlDlg through using Class Wizard (Figure 5-7).

(Figure 5-7 omitted)

Unless we initialize the content of these list boxes, they will be empty at the
beginning. Like other common controls, initialization procedure of list box is
usually implemented in function CDialog:: OnInitDlalog(). To fill a list box with
strings, we need to call function CListBox::AddString(...). Strings will be added
starting from item 0, 1, 2... and so on (If a list box has a sorted style, the string
will be sorted automatically). Besides this function, we can also use function
Clistbox::InsertString(...) to insert a new string before certain item instead of
adding it to the end of the list. The following code fragment shows how the
content of list boxes IDC_LIST and IDC_MULCOL are filled:

(Code omitted)

If we do not specify the column width for a multiple-column list box, the default
column width will be used. We may set this width by calling function
CListBox::SetColumnWidth(...). In the sample 5.6\CCtl, the column width of
IDC_LIST_MULCOL is set 50 (pixels) as follows:

BOOL CCtlDlg::OnInitDialog()

{

......

m_listMCBox.AddString("Item 20");

m_listMCBox.SetColumnWidth(50);

......

}

All the columns will have the same width. For list box IDC_LIST_DIR, instead of
filling each entry with a string, we can let it display a list of directories and file
names for the current working directory. This can be implemented by calling
function CListBox::Dir(...), which has the following format:

int CListBox::Dir(UINT attr, LPCTSTR lpszWildCard);

Here, the first parameter specifies file attributes, which can be used to specify
what type of files can be added to the list. The following is a list of some
attributes that are commonly used:

(Table omitted)

The second parameter is a string, which can be used to set file filter. In the
sample, this function is called as follows:

BOOL CCtlDlg::OnInitDialog()

{

......

m_listDir.Dir(0x10, "*.*");

return TRUE;

}

Here, value 0x10 is passed to the first parameter of function CListBox::Dir(...) to
let normal files along with directories be listed, also, we use "*.*" wildcards to
allow all types of names to be added to the list.

When testing the sample application, we can use mouse along with SHIFT and
CONTROL keys to select items. Also, we can drag mouse over items to test
extended selection style.

5.7 Handling List Box Messages

Like other common controls, list box has its own messages that are related to
mouse or keyboard activities.

Trapping Double Clicking Message

In the previous sample, it may be helpful to trap mouse double clicking message
for list box IDC_LIST_DIR. When the user double clicks a directory, we can
change the contents of the list box, fill it with the file and directory names
contained under the directory being clicked. This feature is implemented in
sample 5.7\CCtl, which is based on sample 5.6\CCtl.

The double clicking message of a list box is LBN_DBLCLK. We can easily add
handler for this message through using Class Wizard: after invoking the Class
Wizard, by clicking "Message maps" tab and selecting class "CCtlDlg", three IDs
of the list boxes will be listed in "Object IDs" window. We can highlight
"IDC_LIST_DIR", then select "LBN_DBCLK" message from "Messages" window,
and press button "Add function". If we accept the default function name, a new
function CtlDlg::OnDblclkListDir() will be added to the application.

Retrieving the Contents of an Item

After receiving the double clicking message, we need to obtain the string
contained in the item that was clicked. For a single selection list box, the current
selected item can be retrieved by calling function CListBox::GetCurSel() (After
being double clicked, the item must become currently selected). This function will
return a zero based index indicating which item is currently being selected. Then
we can call function CListBox::GetText(...) to retrieve the string contained in the
item. Since list IDC_LIST_DIR is a multiple-selection list box, retrieving text from
the selected items is a little different. In this case, first function
CListBox::GetSelCount() must be called to retrieve the number of items that are
currently being selected. According to this value, we must allocate enough
buffers for storing indices of the selected items. Then we can call function
CListBox::GetSelItems(...) and pass the buffer's address to it for receiving

indices of all the selected items. For each index, we can call
CListBox::GetText(...) to retrieve its string.

After a double clicking, one and only one item in the list box will be selected. In
this case, we can skip the first step because CListBox::GetSelCount() will surely
return 1. If a list item represents directory, a pair of square brackets "[]" will be
added to the directory name. So we can judge if the item being double clicked
contains a file name or a directory name by examining if the string starts and
ends with square brackets. If we allow drive names to be displayed, the items
containing drive names will be displayed in the format of "[-X-]", where X
represents the drive name. In our samples, this situation is not considered).

The following is the implementation of function CCtlDlg::OnDblclkListDir(). This
function examines the clicked item. If the item contains a directory name, we
need to update the contents of the list box (File and directory names under the
directory being clicked will be retrieved and filled into the list box):

(Code omitted)

First function CListCtrl::GetSelItems(...) is called to retrieve the currently
selected item. The result is stored to a local variable nIndex. Then text string of
the selected item is obtained by calling function CListCtrl::GetText(...). If the
string starts with "[", it is a directory, and we extract the directory name by
calling function CString::Mid(...). Then contents of the list box are cleared by
calling function CListCtrl::ResetContent(). Next, the current working directory is
changed by calling function _chdir(...). Finally, the list box is filled with the new
directory and file names by calling function CListCtrl::Dir(...). Since function
_chdir(...) is not an MFC function, we need to include "direct.h" header file in
order to use it.

Message WM_DESTROY

Besides directory changing, another new feature is also implemented in the
sample application: we can use mouse to highlight any item contained in the
other two list boxes. When the dialog box is closed, a message box will pop up
displaying all the items that are currently being selected.

Before a window is destroyed, it will receive a WM_DESTROY message, so we can
handle this message to do clean up work. In our case, this is the best place to
retrieve the final state of the list boxes. Please note that we can not do this in the
destructor of class CCtlDlg, because at that time the dialog box window and all its
child window have already been destroyed. If we try to access them, it will cause
the application to malfunction.

Message handler WM_DESTROY can be added by using Class Wizard through

following steps: 1) Click "Message maps" tab and choose "CCtlDlg" class in
window "Class name". 2) Highlight "CCtlDlg" in window "Object IDs". 3) In
"Messages" window, find "WM_DESTROY" message and click "Add function"
button. After the above steps, a new function CCtlDlg::OnDestroy() will be added
to the application.

We will retrieve all the text strings of the selected items for three list boxes and
display them in a message box. For list box IDC_LIST_BOX this is easy, because
it allows only single selection. We can call function CListBox::GetCurSel() to
obtain the index of the selected item and call CListBox::GetText(...) to retrieve
the text:

(Code omitted)

Function CListBox::GetCurSel() will return value LB_ERR if nothing is being
currently selected or the list box has a multiple-selection style. If there is a
selected item, we use CString type variable szStrList to retrieve the text of that
item.

For list box IDC_LIST_MULCOL and IDC_LIST_DIR, things become a little
complicated become both of them allow multiple-selection. We need to first find
out how many items are being selected, then allocate enough buffers for storing
the indices of the selected items, and use a loop to retrieve the text of each item.
Each time a new string is obtained, it is appended to the end of szStrList. The
following code fragment shows how the text of all the selected items is retrieved
for list box IDC_LIST_MULCOL:

(Code omitted)

In this function, first the number of selected items is retrieved by calling function
CListBox::GetSelCount(), and the retrieved value is saved to variable nSelSize. If
the size is not zero, we allocate an integer type array with size of nSelSize. Then
by calling function CListBox::GetSelItems(...), we fill this buffer with the indices
of selected items. Next, a loop is used to retrieve the text of each item. The
procedure of retrieving selected text for list box IDC_LIST_DIR is the same.

5.8 Combo Box

Combo box is another type of common control that allows the user to select one
object from a list. While a list box allows multiple selections, a combo box allows
only single selection at any time. A combo box is made up of two other controls:
an edit box and a list box. There are three types of combo boxes: 1) Simple
combo box: the list box is placed below the edit box, and is displayed all the
time; the edit box displays the currently selected item in the list box. 2) Drop
down combo box: the list box is hidden most of the time; when the user clicks

the drop-down arrow button located at the right corner of the edit box, the list
box is shown and can be used to select an item. In both 1) and 2), the edit box
can be used to input a string. 3) Drop list combo box: it is the same with drop
down combo box, except that its edit box cannot be used to input string.

Using a combo box is more or less the same with that of a list box. We must first
create combo box resources in the dialog template, set appropriate styles, then
in the dialog's initialization stage (in function CDialog::OnInitDialog()), initialize
the combo box. We can add message handlers to trap mouse or keyboard related
events for combo box. Two most important messages for combo boxes are
CBN_CLOSEUP and CBN_SELCHANGE. The first message indicates that the user
has clicked the drop-down arrow button, made a selection from the list box, and
the drop down list is about to be closed. The second message indicates that the
user has selected a new item.

In MFC, combo box is supported by class CComboBox. Like CListBox, class
CComboBox has a function CComboBox::AddString(...) which can be used to
initialize the contents of its list box. Besides this, we can also initialize the
contents of a list box when designing dialog template. In the property sheet
whose caption is "Combo Box Properties", by clicking "Data" tab, we will have a
multiple-line edit box that can be used to input initial data for combo box. We can
use CTRL+RETURN keys to begin a new line (Figure 5-8).

(Figure 5-8 omitted)

Class CComboBox has two functions that allow us to change the contents
contained in the list box dynamically: CComboBox::InsertString(...) and
CComboBox:: DeleteString(...).

When designing drop-down combo box, we must set its vertical size, otherwise it
will be set to the default value zero. In this case, there will be no space for the
list box to be dropped down when the user clicks drop down button. To set this
size, we can click the drop-down button in the dialog template. After doing this, a
resizable tracker will appear. The initial size of a combo box can be adjusted by
dragging the tracker's border (Figure 5-9).

(Figure 5-9 omitted)

Implementing Combo Boxes

Sample 5.8\CCtl demonstrates the basics of combo box. It is a standard dialog-
based application generated by Application Wizard. Three different combo boxes
are implemented in the sample, whose IDs are IDC_COMBO_SIMPLE,
IDC_COMBO_DROPDOWN and IDC_COMBO_DROPLIST respectively. For these
combo boxes, IDC_COMBO_SIMPLE is a "Simple" type, its items are initialized to

"Item 1", "Item 2"... "Item 4" when designing the dialog template;
IDC_COMBO_DROPDOWN is a "Drop down" type, and no initialization is done in
the resource; IDC_COMBO_DROPLIST is a "Drop list" type, its contents are also
initialized as "Item 1", "Item 2"... "Item 4" like IDC_COMBO_SIMPLE. All other
styles are set as default, this will let all three combo boxes have vertical scroll
bars automatically, and their items be sorted alphabetically.

Three static text controls IDC_STATIC_SIMPLE, IDC_STATIC_DROPDOWN and
IDC_STATIC_DROPLIST are added below each combo box. We will use them to
display the current selection of the corresponding combo box dynamically.

Three CComboBox type member variables, m_cbSimple, m_cbDropDown and
m_cbDropList, are declared in class CCCtlDlg. They will be used to access the
combo boxes This can be implemented through using Class Wizard as follows: 1)
Invoke Class Wizard, click "Member variables" tab, select "CCCtlDlg" from window
"Class name". 2) Highlight the ID of the combo box (IDC_COMBO_SIMPLE,
IDC_COMBO_DROPDOWN or IDC_COMBO_DROPLIST), press "Add variable"
button. 3) Select "Control" category and input the variable name.

In function CCCtlDlg::OnInitDialog(), the contents of combo box
IDC_COMBO_DROPDOWN are initialized through calling function
CComboBox::AddString(...):

(Code omitted)

Handling Messages CBN_CLOSEUP and CBN_SELCHANGE

We need to implement message handlers for CBN_CLOSEUP or CBN_SELCHANGE
in order to respond to mouse's events. For combo box IDC_COMBO_DROPDOWN
and IDC_COMBO_DROPLIST, we know that the selection is changed if we receive
message CBN_CLOSEUP. For combo box IDC_COMBO_SIMPLE, we need to use
CBN_SELCHANGE because the list box will not close after a new selection is
made.

Message handlers can be easily added through using Class Wizard as follows: 1)
Invoke Class Wizard, click "Message maps" tab and select "CCCtlDlg" from
window "Class name". 2) Highlight the appropriate combo box ID in window
"Object IDs". 3) In window "Messages", highlight the appropriate message
(CBN_CLOSEUP for IDC_COMBO_DROPDOWN and IDC_COMBO_DROPLIST,
CBN_SELCHANGE for IDC_COMBO_SIMPLE). 3) Click button "Add function" and
confirm the member function name.

These functions will be called when the user makes a new selection from the list
box of a combo box. We can retrieve the index of the current selection of a
combo box by calling function CComboBox:: GetCurSel(), and further retrieve the

text of that item by calling function CComboBox::GetLBText(...). At last we can
call function CWnd::SetWindowText(...) to display the updated content of the
selected item in one of the static text controls. The implementations of three
message handlers are almost the same. The following is one of them:

(Code omitted)

First index of the current selection is retrieved and stored in variable nSel. Then
we check if the returned value is CB_ERR. This is possible if there is nothing
being currently selected. If the returned value is a valid index, we call function
CComboBox::GetLBText(...) to retrieve the text string and store it in CString type
variable szStr. Finally function CWnd::GetDlgItem(...) is called to obtain the
pointer to the static text window, and CWnd::SetWindowText(...) is called to
update its contents.

5.9 Trapping RETURN key strokes for the Combo Box

Problem & Workaround

One feature we may want to add to the combo boxes is to let the user
dynamically add new items through using their edit boxes. We can let the user
input a string into the edit box of a drop-down or simple combo box, then hit the
RETURN key to add the input to list item. However, in a dialog box, the RETURN
key (also the ESC key) is used to exit the application by default. Even if we add
message handler for combo box to trap RETURN keystrokes, it still can not
receive this message because after the message reaches the dialog box, the
application will exit. The message has no chance to be further routed to the child
windows of a dialog box.

If we want to process RETURN keystroke events, we need to intercept the
message before it is processed by the dialog box. In MFC, there is a function
CWnd::PreTranslateMessage(...) that can be overridden for this purpose. This
function will be called just before a message is about to be processed by the
destination window. Since CDialog is derived from CWnd, we can trap any
message sent to the dialog box if we override the above function. This function
has the following format:

BOOL CWnd::PreTranslateMessage(MSG *pMsg);

Its only parameter is a pointer to MSG type object:

typedef struct tagMSG { // msg

HWND hwnd;

UINT message;

WPARAM wParam;

LPARAM lParam;

DWORD time;

POINT pt;

} MSG;

From this structure, we know which window is going to receive the message
(from member hwnd), what kind of message it is (from member message). Also,
we can obtain the message parameters from members wParam and lParam. If
the message is not the one we want to intercept, we can just forward the
message to its original destination by calling the base class version of this
function.

Function CWnd::PreTranslateMessage(...)

Sample 5.9\CCtl demonstrates how to trap RETURN keystrokes for combo box. It
is based on sample 5.8\CCtl. First, function PreTranslateMessage(...) is
overridden. This function can be added by using Class Wizard through following
steps: 1) Open Class Wizard, click "Message Maps" tab, select "CCCtlDlg" from
"Class name" window. 2) Highlight "CCCtlDlg" in window "Object IDs". 3) Locate
and highlight "PreTranslateMessage" in window "Messages". 4) Press "Add
function" button.

The default member function looks like the following:

BOOL CCCtlDlg::PreTranslateMessage(MSG *pMsg)

{

return CDialog::PreTranslateMessage(pMsg);

}

If we do not want to process the message, we need to call function CDialog::
PreTranslateMessage(...) to let the dialog box process it as usual. Otherwise we
need to return a TRUE value to give the operating system an impression that the
message has been processed properly.

In the overridden function, first we need to check if the message is

WM_KEYDOWN and the key being pressed is RETURN:

(Code omitted)

Message WM_KEYDOWN is a standard Windows(message for non-system key
strokes, and VK_RETURN is a standard virtue key code defined for RETUN key
(For a list of virtual key codes, see appendix A). Some local variables are
declared at the beginning. They will be used throughout this function.

Accessing the Edit Box of a Combo Box

We need to find out which combo box has the current focus in order to decide if
we should process this message. If the item that has the current focus is either
IDC_COMBO_DROPDOWN or IDC_COMBO_SIMPLE, we will update the
corresponding list items.

In Windows(operating system, windows are managed through using handles.
Like menu and bitmap resources, a window handle is also a number which could
be used to identify a window. Each window's handle has a different value. As a
programmer, we do not need to know the exact value of the handle, however, we
can use handle to access or identify a window.

In MFC, there is a function CWnd::GetFocus(), which can be used to obtain a
pointer to the child window that has the current focus. From this pointer, we can
obtain that window's handle. Then we can compare the handle obtained from
function CWnd::GetFocus() with the handles of combo boxes. If there is a hit, we
could update the content of that combo box.

Unfortunately, since a combo box is made up of two controls: an edit box and a
list box, if we are trying to input characters into the combo box, it is the edit box
that has the current focus. Thus if we call CWnd::GetFocus() to obtain handle of
the window that has the current focus, we will actually get the handle of the edit
box. The edit box is the child window of the combo box window, and it has a
different handle with its parent. So comparing the handle of the edit box with the
handles of the combo boxes will never result in any hit. The correct step would
be: for each combo box, obtaining the handle of its edit box, then comparing it
with the handle of the focused window. This will eventually result in a hit.

Class CWnd has a member function that can be used to find a window's child
windows:

CWnd *CWnd::GetWindow(UINT nCmd);

Here nCmd specifies what kind of window is being looked for. To enumerate all
the child windows, we need to call this function using GW_CHILD flag to find the

first child window, then, use GW_HWNDNEXT to call the same function repeatedly
until it returns a NULL value. This will enumerate all the sibling windows of the
first child window.

There are still problems here: function CWnd::GetWindow(...) returns a CWnd
type pointer, we can not obtain further information about that window (i.e. is it
an edit box or a list box?). Since a combo box has two child windows, although
we can access both of them with the above-mentioned method, we do not know
which one is the edit box.

In Windows(, before a new type of window is created, it must register a special
class name to the system. Every window has its own class name, which could be
used to tell the window's type. In the case of combo box, its edit box's class
name is "Edit" and its list box's class name is "ComboLBox". Please note that this
class name has nothing to do with MFC classes. It is used by the operating
system to identify the window types rather than a programming implementation.

In MFC, the procedure of creating windows is handled automatically, so we never
bother to register class names for the windows being created, therefore, we
seldom need to know the class names of our windows.

A window's class name can be retrieved from its handle by calling an API
function:

int ::GetClassName(HWND hWnd, LPTSTR lpClassName, int nMaxCount);

The first parameter hWnd is the handle of window whose class name is being
retrieved; the second parameter lpClassName is the pointer to a buffer where the
class name string can be put; the third parameter nMaxCount specifies the length
of this buffer.

We can access the first child window of the combo box, see if its class name is
"Edit". If not, the other child window must be the edit box. This is because a
combo box has only two child windows.

A window's handle can be obtained by calling function CWnd::GetSafeHwnd(). If
the window that has the current focus is the edit box of a combo box when
RETURN is pressed, we need to notify the parent window about this event. In the
sample, a user defined message is used to implement this notification:

#define WM_COMBO_RETURN WM_USER+1000

The following portion of function CCCtlDlg::PreTranslateMessage(...) shows how
to retrieve the handles of the edit boxes and compare them with the handle of
the focused window:

(Code omitted)

First the handle of currently focused window is stored in variable hwndFocus. If it
is a valid window handle, we use m_cbDropDown to get the first child window of
IDC_COMBO_DROPDOWN. Then this child window's class name is retrieved by
calling function ::GetClassName(...). If the class name is "Edit", we compare its
handle with the focused window handle. Otherwise we need to get the handle of
the other child window before doing the comparison. This will assure that the
handle being compared is the handle of the edit box. If the edit box has the
current focus, we post the user defined message WM_COMBO_RETURN, whose
WPARAM parameter is assigned the ID of combo box. Finally a TRUE value is
returned to prevent the dialog box from further processing this message.

Message WM_COMBO_RETURN is processed in class CCCtlDlg. The member
function used to trap this message is CCCtlDlg::OnComboReturn(...). The
following code fragment shows how this function is declared and message
mapping is implemented:

Function declaration:

class CCCtlDlg : public CDialog

{

......

protected:

......

afx_msg LONG OnComboReturn(UINT, LONG);

DECLARE_MESSAGE_MAP()

};

Message mapping macros:

BEGIN_MESSAGE_MAP(CCCtlDlg, CDialog)

......

ON_MESSAGE(WM_COMBO_RETURN, OnComboReturn)

END_MESSAGE_MAP()

Function implementation:

(Code omitted)

In this message handler, we first obtain a pointer to the combo box using the ID
passed through WPARAP message parameter. Then we use above-mentioned
method to get the pointer to the edit box (a child window of combo box), and
assign it to variable ptrEdit. Then we use this pointer to call function CWnd::
GetWindowText(...) to retrieve the text contained in the edit box window. If the
edit box is not empty (this is checked by calling function CString::IsEmpty()), we
select all the text in the edit box by calling function CEdit::SetSel(...), which has
the following format:

void CEdit::SetSel(int nStartChar, int nEndChar, BOOL bNoScroll = FALSE);

The first two parameters of this function allow us to specify a range indicating
which characters are to be selected. If we pass 0 to nStartChar and -1 to
nEndChar, all the characters in the edit box will be selected. Then we use a loop
to check if the text contained in the edit box is identical to any item string in the
list box. In case there is no hit, we will add this string to the list box by calling
function CComboBox::AddString(...). Finally, a TRUE value is returned before this
function exits.

Using this method, we can also trap other keystrokes such as DELETE, ESC to the
combo box. This will make the application easier to use.

5.10 Implementing Subclass for the Edit Box of a Combo Box

Under certain conditions we may want to put restrictions on the contents of the
list items. For example, sometimes we may want the combo box to hold only
numerical characters ('0'-'9'), and sometimes we may expect it to hold only
alphabetical characters ('a'-'z', 'A'-'Z'). In these cases, we may want to customize
the properties of the edit box so that only a special set of characters can be
accepted. If we are creating an edit box resource in dialog template, this can be
easily achieved by setting its customizable styles. But for the edit box of a combo
box, we can not customize its styles before it is created, so the edit box
contained in a combo box will have only the default styles.

To customize the behavior of the edit box in a combo box, we need to use
"subclass" technique. We can design our own class to intercept and process the
messages sent to the edit box. Sample 5.10\CCtl demonstrates how to customize
the edit box that belongs to a combo box. It is based on sample 5.9\CCtl, with
two combo boxes customized as follows: combo box IDC_COMBO_SIMPLE allows

only numerical characters to be input into the edit box; combo box
IDC_COMBO_DROPDOWN accepts only alphabetic characters.

Designing New Classes

Before implementing subclass, we need to design two classes that have the
above-mentioned new properties. In the sample, MCNumEdit and MCCharEdit are
added for this purpose. Both of them are derived from class CEdit. In Developer
Studio, a new class can be easily added by using Class Wizard through following
steps: 1) Execute command Insert | New Class to invoke the Class Wizard. 2)
Input the class name, select the header file and implemantation file name. 3)
Select base class name.

To customize the input attributes of an edit box, we need to handle WM_CHAR
message, which is used to indicate that a character is being input into the
control. This message handler can also be added through using Class Wizard after
it is invoked as follows: 1) Click "Message Map" tab, select "MCNumEdit" or
"MCCharEdit" class name in window "Class name". 3) Highlight "MCNumEdit" or
"MCCharEdit" in window "Object IDs". 4) Locate and highlight "WM_CHAR" in
window "Messages". 5) Click "Add function" button.

The following is one of the two functions generated by Class Wizard:

void MCNumEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)

{

CEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);

}

This function has three parameters. The first parameter nChar indicates the value
of the key, which provides us with the information of which key being pressed.
The Second parameter indicates the repeat count, and the third parameter holds
extra information about the keystrokes.

If we want the keystroke to be processed normally, we need to call the base class
version of this function. If we do not call this function, the input will have no
effect on the edit box. The following code fragment shows two message handlers
implemented in the sample:

(Code omitted)

Class MCNumEdit accepts characters '0'-'9' and backspace key, class MCCharEdit
accepts characters 'A'-'Z', 'a'-'z' and backspace key.

Implementing Subclass

To use the two classes, we need to include their header files and use them to
declare two new variables in class CCCtlDlg:

......

#include "CharEdit.h"

#include "NumEdit.h"

......

class CCCtlDlg : public CDialog

{

......

protected:

......

MCCharEdit m_editChar;

MCNumEdit m_editNum;

......

};

In the dialog box's initialization stage, we need to implement subclass and
change the default behavior of the edit boxes. Remember in the previous
chapter, function CWnd::SubclassDlgItem(...) is used to implement subclass for
an item contained in a dialog box. Although the edit box within a combo box is a
indirect child window of the dialog box, it is not created from dialog template. So
here we must call function CWnd::SubclassWindow(...) to implement subclass.
The following is the format of this function:

BOOL CWnd::SubclassWindow(HWND hWnd);

Here, parameter hWnd is the handle of the window whose behavior is to be
customized. From sample 5.9\CCtl, we know how to obtain the handle of the edit

box that belongs to a combo box. The following is the procedure of implementing
subclass for IDC_COMBO_DROPDOWN combo box:

(Code omitted)

With the above implementation, the combo box is able to filter out the characters
we do not want.

5.11 Owner Draw List Box and Combo Box

Like menu, list box and combo box do not have to bear plain text interface all the
time. Sometimes we can customize them to display images. In the previous
samples, when implementing a list box or a combo box, we always select "No" for
the "Owner draw" style. Actually, the "Owner draw" style can be set to other two
selections: "Fixed" and "Variable". For a "fixed" type owner-draw list box or
combo box, each item contained in the list box must have a same height. For a
"variable" type of owner draw list box or combo box, this height can be variable.
Like the menu, the owner-draw list box or combo box are drawn by their owner.
The owner will receive message WM_MEASUREITEM and WM_DRAWITEM when
the list box or the combo box needs to be updated. For "fixed" type owner draw
list box or combo box, WM_MEASUREITEM is sent when it is first created and the
returned size will be used for all items. For "variable" type owner-draw list box or
combo box, this message is sent for each item separately. Message
WM_DRAWITEM will be sent when the interface of list box or combo box needs to
be updated.

Owner-Draw Styles

Sample 5.11\CCtl demonstrates owner-draw list box and combo box. It is a
dialog based application generated by Application Wizard. There are only two
common controls contained in the dialog box: a list box IDC_LIST and a combo
box IDC_COMBO. The list box supports "Fixed" owner-draw style, and the combo
box supports "Variable" owner-draw style. The "Sort" style is not applicable to an
owner-draw list box or combo-box, because their items will not contain
characters.

Preparing Bitmaps

Six bitmap resources are added to the application for list box and combo box
drawing. Among them, IDB_BITMAP_SMILE_1, IDB_BITMAP_SMILE_2,
IDB_BITMAP_SMILE_3 and IDB_BITMAP_SMILE_4 have the same dimension,
they will be used for implementing owner-draw list box. Bitmaps
IDB_BITMAP_BUTTON_SEL and IDB_BITMAP_BUTTON_UNSEL have a different
size with the above four bitmaps, they will be used together with
IDB_BITMAP_BIG_SMILE_1 and IDB_BITMAP_BIG_SMILE_2 to implement owner-

draw combo box.

Identifying Item Types

The following macros are defined for different item types:

#define COMBO_BUTTON 0

#define COMBO_BIGSMILE 1

#define LIST_SMILE_1 0

#define LIST_SMILE_2 1

#define LIST_SMILE_3 2

#define LIST_SMILE_4 3

Each macro represents a different bitmap. We will use these macros to set item
data for list box and combo box. Since the item data will be sent along with
message WM_DRAWITEM, we can use it to identify item types. This is the same
with owner-draw menu.

Two CComboBox type variables m_cbBmp and m_lbBmp are declared in class
CCCtlDlg through using Class Wizard, they will be used to access the list box and
the combo box. In function CCCtlDlg::OnInitDialog(), the list box and the combo
box are initialized as follows:

(Code omitted)

Instead of adding a real string, we pass predefined integers to function
CComboBox::AddString(...) and CListBox::AddString(...) For owner-draw list box
and combo box, these integers will not be used as buffer addresses for obtaining
strings. Instead, they will be sent along with message WM_MEASUREITEM to
inform us the item type.

Handling Message WM_MEASUREITEM

The standard message handlers for WM_MEASUREITEM and WM_DRAWITEM are
CWnd::OnMeasureItem(...) and CWnd::OnDrawItem(...) respectively, they can
be added through using Class Wizard.

The following is the format of function CWnd::OnMeasureItem(...):

void CWnd::OnMeasureItem(int nIDCtl, LPDRAWITEMSTRUCT lpDrawItemStruct);

This function is called to retrieve the size of item. It has two parameters, the first
parameter nIDCtl indicates the ID of control whose item's size is being retrieved.
The second parameter is a pointer to a DRAWITEMSTRUCT object, and we will
use its itemData member to identify the type of the item. Since the value of this
member is set in the dialog's initialization stage by calling function
CComboBox::AddString(...), it must be one of our predefined macros
(LIST_SMILE_1, LIST_SMILE_2...). In the overridden function, we need to check
the value of nIDCtl and lpDrawItemStruct->itemData, load the corresponding
bitmap resource into a CBitmap type variable, call function
CBitmap::GetBitmap(...) to retrieve the dimension of the bitmap, and use it to
set both lpDrawItemStrut->itemWidth and lpDrawItemStrut->itemHeight:

(Code omitted)

Handling Message WM_DRAWITEM

The following is the format of function CWnd::OnDrawItem(...):

void CWnd::OnDrawItem(int nIDCtl, LPDRAWITEMSTRUCT lpDrawItemStruct);

It also has two parameters. Like CWnd::OnMeasureItem(...), the first parameter
of this function is the control ID, and the second parameter is a pointer to a
DRAWITEMSTRUCT type object. This structure contains all the information we
need to draw an item of list box or combo box: the DC handle, the item's state,
the item data, the position and size where the drawing should be applied. The
following portion of the overridden function shows how to load correct bitmap by
examining nIDCtl and lpDrawItemStruct->itemData:

(Code omitted)

Five local variables are declared: bmp is used to load the bitmap; dcMemory is
used to create memory DC and implement image copying; ptrBmpOld is used to
restore the original state of dcMemory; ptrDC is used to store the target DC
pointer, which is obtained from hDC member of structure DRAWITEMSTRUCT; bm
is used to store the information (including dimension) of the bitmap; rect is used
to store the position and size where the bitmap should be copied.

From the above source code we can see, if the control is IDC_LIST, we load one
of the four bitmaps (IDB_BITMAP_SMILE_1, IDB_BITMAP_SMILE_2,
IDB_BITMAP_SMILE_3 or IDB_BITMAP_SMILE_4) according to the value of
lpDrawItemStruct->itemData. If the control is IDC_COMBO, we load
IDB_BITMAP_BUTTON_SEL or IDB_BITMAP_BIG_SMILE_1 if the item is selected;
and load IDB_BITMAP_BUTTON_UNSEL or IDB_BITMAP_BIG_SMILE_2 if the item

is not selected. Here, ODS_SELECTED bit of member lpDrawItemStruct-
>itemState is checked to retrieve item's state.

The following portion of function CCCtlDlg::OnDrawItem(...) draws the bitmap:

(Code omitted)

Only after the bitmap is loaded successfully will we draw the list box or combo
box item. First function CDC::FromHandle(...) is called to obtain a CDC type
pointer from HDC handler. Then we create a memory DC (compatible with target
DC) and select bmp into this DC. Next, function CDC::BitBlt(...) is called to copy
the bitmap from memory DC to target DC. For list box items, there is no special
bitmaps for their selected states. In case if an item is selected, the corresponding
normal bitmap will be drawn using DSTINVERT mode. This will cause every pixel
of the bitmap to change to its complement color. When we pass DSTINVERT to
function CDC::BitBlt(...), its fifth argument can be set to NULL.

5.12 Tree Control

Tree control allows us to organize objects into a tree structure. One good
example of this type of applications would be a file manager. A tree control can
be implemented in both a view window and a dialog box. To implement tree
control in a view, we can implement the view using class CTreeView. To
implement tree control in a dialog box, we need to use CTreeCtrl class. In this
section we will focus on dialog box implementation of tree control.

Like other common controls, we can add tree control resources to the dialog
template when designing application's resource. The tree control will have an ID,
which could be used to access the control (by either calling function
CWnd::GetDlgItem(...) or adding CTreeCtrl type member variable).

Image List

We can associate a bitmap image with each node contained in the tree control.
This will make the tree control more intuitive. For example, in a file manager
application, we may want to use different images to represent different file types:
folder, executable file, DLL file, etc. Before using the images to implement the
tree control, we must first prepare them. For tree control (also list control and
tab control), these images must be managed by Image List, which is supported
by class CImageList in MFC.

Class CImageList can keep and manage a collection of images with the same
size. Each image in the list is assigned a zero-based index. After an image list is
created successfully, it can be selected into the tree control. We can associate a
node with any image contained in the image list. Here image drawing is handled

automatically.

If we provide mask bitmaps, only the unmasked portion of the images will be
drawn for representing nodes. A mask bitmap must contain only black and white
colors. Besides preparing mask bitmaps by ourselves, we can also generate mask
bitmaps from the normal images.

To use class CImageList, first we need to declare a CImageList type variable. If
we create an image list dynamically by using "new" operator, we need to release
the memory when it is no longer in use. Before adding images to the list, we
need to call function CImageList::Create(...) to initialize it. This function has
several versions, the following is one of them:

BOOL CImageList::Create(int cx, int cy, UINT nFlags, int nInitial, int nGrow);

Here cx and cy indicate the dimension of all images, nInitial represents the
number of initial bitmaps that will be included in the image list, nGrow specifies
the number of bitmaps that can be added later. Parameter nFlags indicates
bitmap types, it could be ILC_COLOR, ILC_COLOR4, ILC_COLOR8, etc., which
specify the bitmap format of the images. For example, ILC_COLOR indicates
default bitmap format, ILC_COLOR4 indicates 4-bit DIB format (16-color),
ILC_COLOR8 indicates 8-bit DIB format (256-color). We can combine ILC_MASK
with any of these bitmap format flags to let the image be drawn with
transparency.

The images can be added by calling function CImageList::Add(...). Again, this
function has three versions:

int CImageList::Add(CBitmap *pbmImage, CBitmap *pbmMask);

int CImageList::Add(CBitmap *pbmImage, COLORREF crMask);

int CImageList::Add(HICON hIcon);

The image list can be created from either bitmaps or icons. For the first version
of this function, the second parameter is a pointer to the mask bitmap that will
be used to implement transparent background drawing. The second version
allows us to specify a background color that can be used to generate a mask
bitmap from the normal image. Here parameter crMask will be used to create the
mask bitmap: all pixels in the source bitmap that have the same color with
crMask will be masked when the bitmap is being drawn, and their colors will be
set to the current background color. We can choose a background color by calling
function CImageList::SetBkColor(...).

To use image list with a tree control, we need to call function

CTreeCtr::SetImageList(...) to assign it to tree control. Then, when creating a
node for the tree control, we can use the bitmap index to associate any node with
this image.

Adding Nodes

At the beginning, the tree control does not contain any node. Like other common
controls, we can initialize it in function CDialog::OnInitDialog(). To add a node to
the tree, we need to call function CTreeCtrl::InsertItem(...).

This function also has several versions. The following is the one that has the
simplest format:

int CTreeCtrl::InsertItem(LPTV_INSERTSTRUCT lpInsertStruct);

The only parameter to this function is a TV_INSERTSTRUCT type pointer:

typedef struct _TV_INSERTSTRUCT{

HTREEITEM hParent;

HTREEITEM hInsertAfter;

TV_ITEM item;

} TV_INSERTSTRUCT;

In a tree control, nodes are managed through handles. After a node is created, it
will be assigned an HTREEITEM type handle. Each node has a different handle, so
we can use the handle to access a specific node. In the above structure, member
hParent indicates which node is the parent of the new node. If we assign NULL to
this member, the new node will become the root node. Likewise, member
hInsertAfter is used to indicate where the new node should be inserted. We can
specify a node handle, or we can use predefined parameters TVI_FIRST,
TVI_LAST or TVI_SORT to insert the new node after the first node, last node or
let the nodes be sorted automatically.

Member item is a TV_ITEM type object, and the structure contains the
information of the new node:

typedef struct _TV_ITEM {

UINT mask;

HTREEITEM hItem;

UINT state;

UINT stateMask;

LPSTR pszText;

int cchTextMax;

int iImage;

int iSelectedImage;

int cChildren;

LPARAM lParam;

} TV_ITEM;

In order to add new nodes, we need to understand how to use the following four
members of this structure: mask, pszText, iImage and iSelectedImage.

Member mask indicates which of the other members in the structure contain valid
data. Besides mask, every member of this structure has a corresponding mask
flag listed as follows:

(Table omitted)

In order to use members pszText, iImage and iSelectedImage, we need to set
the following bits of member mask:

TVIF_IMAGE | TVIF_SELECTEDIMAGE | TVIF_TEXT

Member pszText is a pointer to a null-terminated string text that will be used to
label this node. Member iImage and iSelectedImage are indices to two images
contained in the image list that will be used to represent the node's normal and
selected state respectively.

By calling function CTreeCtrl::InsertItem(...) repeatedly, we could create a tree
structure with desired number of nodes.

Sample

Sample 5.12\CCtl demonstrates how to use tree control in a dialog box. It is a

dialog based application generated by Application Wizard. There is only one tree
control IDC_TREE in the dialog template. To access it, a member variable
CCCtlDlg::m_treeCtrl is added for IDC_TREE through using Class Wizard.

To create the image list, five bitmap resources are prepared, whose IDs are
IDB_BITMAP_CLOSEDFOLDER, IDB_BITMAP_DOC, IDB_BITMAP_LEAF,
IDB_BITMAP_OPENFOLDER and IDB_BITMAP_ROOT respectively. These bitmaps
have the same dimension.

In function CCCtlDlg::OnInitDlalog(), the image list is created as follows:

(Code omitted)

A CBitmap type local variable bmp is declared to load the bitmap resources. First,
function CImageList::Create(...) is called to create the image list. Here macro
BMP_SIZE_X and BMP_SIZE_Y are defined at the beginning of the
implementation file, they represent the dimension of the bitmaps:

#define BMP_SIZE_X 16

#define BMP_SIZE_Y 15

We use ILC_MASK flag to let the bitmaps be drawn with transparent background.
Originally the image list has five bitmaps, it will not grow later (The fourth and
fifth parameter of function CImageList::Create(...) are 5 and 0 respectively).

Next we use variable bmp to load each bitmap resource and add it to the list.
When calling function CImageList::Add(...), we pass a COLORREF type value to
its second parameter (RGB macro specifies the intensity of red, green and blue
colors, and returns a COLORREF type value). This means all the white color in the
image will be treated as the background. In the sample application, the
background color is set to white:

m_pilCtrl->SetBkColor(RGB(255, 255, 255));

We can also change the values contained in the RGB macro to set the
background to other colors.

Besides this method, we can also prepare all the images in one bitmap resource
(just like the tool bar resource), and call the following versions of function
CImageList::Create(...) to create the image list:

BOOL CImageList::Create(UINT nBitmapID, int cx, int nGrow, COLORREF
crMask);

BOOL CImageList::Create(LPCTSTR lpszBitmapID, int cx, int nGrow, COLORREF
crMask);

Here nBitmapID or lpszBitmapID specifies the bitmap resource ID, and cx
specifies the horizontal dimension of an individual image. With this parameter,
the system knows how to divide one big image into several small images.

After creating the image list, function CTreeCtrl::SetImageList(...) is called to
assign the image list to the tree control:

......

m_treeCtrl.SetImageList(m_pilCtrl, TVSIL_NORMAL);

......

Since the image list is created dynamically, we need to release it when it is no
longer in use. The best place to destroy the image list is in CDialog::OnDestroy(),
when the dialog box is about to be destroyed. This function is the handler of
WM_DESTROY message, which could be easily added through using Class Wizard.
The following is the implementation of this function in the sample:

(Code omitted)

We call function CImageList::GetImageList(...) to obtain the pointer to the image
list, then call CImageList::DeleteImageList() to delete the image list. Please note
that this function releases only the images stored in the list, it does not delete
CImageList type object. After the image list is deleted, we still need to use
keyword "delete" to delete this object.

In the sample, a tree with the structure showed in Figure 5-10 is created.

This tree has 7 nodes. Node "Root" is the root node, it has one child node "Doc".
Node "Doc" has a child node "Folder", and node "Folder" has four child nodes
"Leaf1", "Leaf2", "Leaf3" and "Leaf4". The following portion of function
CCCtlDlg::OnInitDialog() shows how the node "Root" is created in the sample:

(Code omitted)

Variable tvInsertStruct is declared at the beginning of function
CCCtlDlg::OnInitDialog(), it is a TV_INSERTSTRUCT type object. To create a
specific node, we must stuff this object with node information and call function
CTreeCtrl::InsertItem(...). This function returns a handle to the newly created
node, which is stored in variable hTreeItem and will be used to create its child
node. The following portion of function CCCtlDlg::OnInitDialog() shows how the

child node is created:

(Code omitted)

This procedure is exactly the same for other nodes. For different nodes, the only
difference of this procedure is that each node has different parent node, uses
different image index and text string. For all nodes, their normal states and
selected states are represented by the same image (member iImage and
iSelectedImage are assigned the same image index), so the image will not
change if we select a node.

With the above implementations, the tree control can work. By compiling and
executing the application at this point, we will see a tree with seven nodes, which
are represented by different labels and images. A node can be expanded or
collapsed with mouse clicking if it has child node(s).

5.13 Handling Tree Control Messages

There are many messages associated with the tree control. We need to write
message handlers for the tree control in order to customize its default behavior.
In sample 5.13\CCtl we will demonstrates two methods of customizing a tree
control: 1) How to change a node's associated image dynamically. 2) How to
enable label editing.

Sample 5.13\CCtl is based on sample 5.12\CCtl. In this sample the image
associated with node "Folder" will be changed automatically according to its
current state (expanded or collapsed). If it is expanded, image
IDB_BITMAP_OPENFOLDER will be associated with this node; if it is collapsed,
image IDB_BITMAP_CLOSED_FOLDER will be used. Also, the application supports
dynamic label editing: if the user clicks mouse's left button on the label of a
node, that node will enter editing mode, and we can edit the text string as if we
were using an edit box.

The messages associated with node expanding and collapsing are
TVN_ITEMEXPANDING and TVN_ITEMEXPANDED. The former message is sent
when a node is about to be expanded or collapsed, and the latter message is sent
after such action is completed. In our case, we need to handle the former
message to change a node's image before its state changes.

Handling TVN_ITEMEXPANDING to Change a Node's Associated Image

In MFC, message TVN_ITEMEXPANDING can be mapped to a member function as
follows:

void CTreeCtrl::OnItemexpanding(NMHDR *pNMHDR, LRESULT *pResult)

{

NM_TREEVIEW *pNMTreeView = (NM_TREEVIEW*)pNMHDR;

*pResult = 0;

}

Variable pNMTreeView is a pointer to NM_TREEVIEW type object obtained from
the message parameters, it contains the information about the node being
clicked:

typedef struct _NM_TREEVIEW{

NMHDR hdr;

UINT action;

TV_ITEM itemOld;

TV_ITEM itemNew;

POINT ptDrag;

} NM_TREEVIEW;

The most important member of this structure is action, it could be either
TVE_EXPAND (indicating the node is about to expand) or TVE_COLLAPSE
(indicating the node is about to collapse). Two other useful members are itemOld
and itemNew, both of them are TV_ITEM type objects and contain old and new
states of the node respectively. We can check iImage member of itemNew to see
if the associated image is 2 or 3 (Indices 2 and 3 correspond to image
IDB_BITMAP_CLOSED_FOLDER and IDB_BITMAP_OPENFOLDER respectively,
which indicate that the node represents a folder. In the sample, we will not
change other node's image when they are being expanded or collapsed), if so, we
need to call function CTreeCtrl::SetItemImage(...) to change the image of the
node if necessary.

We can handle this message either within class CTreeCtrl or CDialog. Handling
the message in CTreeCtrl has the advantage that once the feature is
implemented, we can reuse this class in other applications without adding
additional code.

In the sample, a new class MCTreeCtrl is designed for this purpose. It is added to

the application through using Class Wizard. Also, message handlers
MCTreeCtrl::OnItemexpanding(...) and MCTreeCtrl::OnEndlabeledit(...) are
added to dynamically change node's associated images and enable label editing
(Label editing will be discussed later).

The following is the implementation of function
MCTreeCtrl::OnItemexpanding(...):

(Code omitted)

If the node is about to expand and its associated image is 2, we associate image
3 with this node. This is implemented through calling function
CTreeCtrl::SetItemImage(...), which has the following format:

BOOL CTreeCtrl::SetItemImage(HTREEITEM hItem, int nImage, int
nSelectedImage);

The first parameter of this function is the handle of tree control, which can be
obtained from pNMTreeView->itemNew.hItem. Similarly, if the node is about to
collapse and its associated image is 3, we call this function to associate image 2
with this node.

Handling TVN_ENDLABELEDIT to Enable Label Editing

The next feature we want to add is label editing. If we are familiar with "Explorer"
application in Windows95(, we know that the file or directory names (which are
node labels) can be edited dynamically by single clicking on it.

The first step of enabling label editing is to set "Edit labels" style when adding
tree control resource to the dialog template. The following lsts necessary steps of
doing this: 1) Invoke "Tree Control Properties" property sheet, click "Styles" tab.
2) Check "Edit labels" check box (Figure 5-11).

Label editing will be enabled if this style is selected. However, if we do not add
code to change the label at the end of editing, the label will remain unchanged
after it is edited. To make this happen, we must handle message
TVN_ENDLABELEDIT.

Standard TVN_ENDLABELEDIT message handler added by Class Wizard will have
the following format:

void MCTreeCtrl::OnEndlabeledit(NMHDR *pNMHDR, LRESULT *pResult)

{

TV_DISPINFO *pTVDispInfo = (TV_DISPINFO*)pNMHDR;

*pResult=0;

}

Here pTVDispInfo is a pointer to TV_DISPINFO type object, which can be
obtained from the message parameter. The most useful member of TV_DISPINFO
is item, which is a TV_ITEM type object. Three members of item contain valid
information: hItem, lParam, and pszText. We could use hItem to identify the
node and use pszText to obtain the updated text string. If pszText is a NULL
pointer, this means the editing is canceled (Label editing can be canceled through
pressing ESC key). Otherwise it will contain a NULL-terminated string. The
following is the implementation of this message handler:

(Code omitted)

If the editing is not canceled, we need to call function CTreeCtrl::SetItemText(...)
to set the node's new text, which has the following format:

BOOL CTreeCtrl::SetItemText(HTREEITEM hItem, LPCTSTR lpszItem);

This function is similar to CTreeCtrl::SetItemImage(...). Its first parameter is the
handle of tree control, and the second parameter is a string pointer to the new
label text.

There are other messages associated with label editing, one useful message is
TVN_BEGINLABELEDIT, which will be sent when the editing is about to begin. We
can handle this message to disable label editing for certain nodes. In the
message handler, if we assign a non-zero value to the content of pResult, the
edit will stop. Otherwise the label editing will go on as usual.

Using the New Class

In the new sample, variable CCCtlDlg::m_treeCtrl is declared by class MCTreeCtrl
instead of CTreeCtrl. First the header file that contains class MCTreeCtrl is
included in file "CCtlDlg.h", then the declaration of member variable
CCCtlDlg::m_treeCtrl is changed:

class CCCtlDlg : public CDialog

{

......

//{{AFX_DATA(CCCtlDlg)

enum { IDD = IDD_CCTL_DIALOG };

MCTreeCtrl m_treeCtrl;

That's all we need to do in order to add new features to the sample.

When editing a label, we can not press RETURN key to end the editing. This is
because in a dialog box, RETURN is used to close the dialog box by default. If we
want to change this feature, we need to override function
CDialog::PreTranslateMessage(...) and intercept RETURN key stroke messages as
we did for combo box in sample 5.9\CCtl.

5.14 Drag-n-Drop

Another nice feature we can add to tree control is to change the tree structure by
dragging and dropping. By implementing this, we can copy or move one node
(and all its child nodes) to another place with few mouse clicks.

Sample 5.14\CCtl demonstrates drag-n-drop implementation. It is base on
sample 5.13\CCtl with new messages handled in class MCTreeCtrl.

Handling New Messages

To implement node dragging and dropping, we need to handle the following three
messages: TVN_BEGINDRAG, WM_MOUSEMOVE and WM_LBUTTONUP. The first
message is sent when the user starts node dragging. After receiving this
message, we need to prepare node dragging. Message WM_MOUSEMOVE should
be handled when an item is being dragged around: when the mouse cursor hits a
possible target node, we need to highlight it to remind the user that the source
node could be dropped here. When we receive message WM_LBUTTONUP, we
need to check if the node can be copied to the new place, if so, we need to
implement node copy (or move).

In the sample, message handlers of TVN_BEGINDRAG, WM_MOUSEMOVE and
WM_LBUTTONUP are added through using Class Wizard. The default
TVN_BEGINDRAG message handler has the following format:

void MCTreeCtrl::OnBegindrag(NMHDR *pNMHDR, LRESULT *pResult)

{

NM_TREEVIEW *pNMTreeView=(NM_TREEVIEW *)pNMHDR;

*pResult=0;

}

Here, several issues must be considered when a node is being dragged around:

1) To determine which node is being clicked for dragging after receiving message
TVB_BEGINDRAG, we can call API function ::GetCursorPos(...) to retrieve the
current position of mouse cursor, call function CWnd::ScreenToClient(...) to
convert its coordinates, and call CTreeCtrl::HitTest(...) to obtain the handle of the
node that is being clicked.

2) We must provide a dragging image that will be drawn under the mouse cursor
to give the user an impression that the node is being "dragged". An easiest way
of preparing this image is to call function CTreeCtrl::CreateDragImage(...), which
will create dragging image using the bitmap associated with this node. This
function will return a CImageList type pointer, which could be further used to
implement dragging. We can also create our own customized image list for
dragging operation, the procedure of creating this type of image list is the same
with creating a normal image list.

3) We can call function CImageList::SetDragCursorImage(...) to combine an
image contained in the image list with the cursor to begin dragging.

4) We must lock the tree control window when a node is being dragged around to
avoid any change happening to the tree structure (When a node is being
dragged, the tree should not change). When we want to do a temporary update
(For example, when the dragging image enters a node and we want to highlight
that node to indicate that the source can be dropped there), we must first unlock
the window, then implement the update. If we want the dragging to be
continued, we must lock the window again.

5) Function CImageList::EnterDrag(...) can be called to enter dragging mode and
lock the tree control window. Before we make any change to the tree control
window (For example, before we highlight a node), we need to call function
CImageList::LeaveDrag(...) to unlock the tree control window. After the updates,
we need to call CImageList::EnterDrag(...) again to lock the window. This will
prevent the tree control from being updated when a node is being dragged
around.

6) We can show or hide the dragging image by calling function
CImageList::DragShowNolock(...) without locking the tree control window. This
function is usually called before CImageList::SetDragCursorImage(...) is called.

7) To begin dragging, we need to call CImageList::BeginDrag(...); to move the

dragging image to a specified position, we can call CImageList::DragMove(...); to
end dragging, we need to call CImageList::EndDrag().

8) We can highlight a node by calling function CTreeCtrl::SelectDropTarget(...).

The following is a list of prototypes of the above-mentioned functions:

BOOL CImageList::DragShowNolock(BOOL bShow);

(Table omitted)

BOOL CImageList::BeginDrag(int nImage, CPoint ptHotSpot);

(Table omitted)

BOOL CImageList::DragMove(CPoint pt);

(Table omitted)

BOOL CImageList::DragEnter(CWnd *pWndLock, CPoint point);

(Table omitted)

BOOL CImageList::DragLeave(CWnd *pWndLock);

(Table omitted)

BOOL CTreeCtrl::SelectDropTarget(HTREEITEM hItem);

(Table omitted)

When the mouse button is released, we need to check if the source node can be
copied to the target node. In the sample, we disable copying under the following
three conditions: 1) The source node is the same with the target node. 2) The
target node is a descendent node of the source node. 3) The target node does
not have any child node. By setting these restrictions, a node can only be copied
to become the child of its parent node (direct or indirect).

We can use function CTreeCtrl::GetParentItem(...) to decide if one node is the
descendent of another node:

HTREEITEM CTreeCtrl::GetParentItem(HTREEITEM hItem);

This function will return an HTREEITEM handle, which specifies the parent of node

hItem. By repeatedly calling this function we will finally get a NULL return value
(This indicates that the root node was encountered). Using this method, we can
easily find out a list of all nodes that are parents of a specific node.

New Member Variables and Functions

To implement drag-n-drop, several new variables and functions are declared in
class MCTreeCtrl:

(Code omitted)

Here, Boolean type variable m_bIsDragging is used to indicate if the drag-n-drop
activity is undergoing. Pointer m_pilDrag will be used to store the dragging
image. Variables m_hTreeDragSrc and m_hTreeDragTgt are used to store the
handles of source and target nodes respectively. We can use them to implement
copying right after the source node is dropped. Function
MCTreeCtrl::IsDescendent(...) is used to judge if one node is the descendent
node of another, and MCTreeCtrl::CopyItemTo(...) will copy one node (and all its
descendent nodes) to another place.

Node Copy

When copying a node, we want to copy not only the node itself, but also all its
descendent nodes. Since we do not know how many descendents a node have
beforehand, we need to call function MCTreeCtrl::CopyItemTo(...) recursively
until all the descendent nodes are copied. The following is the implementation of
this function:

(Code omitted)

This function copies node hTreeDragSrc along with all its descendent nodes, and
make them the child nodes of hTreeDragTgt. First we call function
CTreeCtrl::GetItem(...) to retrieve source node's information. We must pass a
TV_ITEM type pointer to this function, and the corresponding object will be filled
with the information of the specified node. Here, we use member item of
structure TV_INSERTSTRUCT to receive a node's information (Variable
tvInsertStruct is declared by TV_INSERTSTRUCT, it will be used to create new
nodes). When calling this function, member mask of TV_ITEM structure specifies
which member should be filled with the node's information. In our case, we want
to know the handle of this node, the associated images, the text of the label, the
current state (expanded, highlighted, etc.), and if the node has any child node.
So we need to set the following bits of member mask: TVIF_CHILDREN,
TVIF_HANDLE, TVIF_IMAGE, TVIF_SELECTEDIMAGE, TVIF_TEXT and
TVIFF_STATE. Note we must provide our own buffer to receive the label text. In
the function, szBuf is declared as a char type array and its address is stored in

pszText member of TV_ITEM. Then we use tvInsertStruct to create a new node.
Since we have already stuffed item member with valid information, here we only
need to assign the target handle (stored in hTreeDragTgt) to hParent, and assign
TVI_LAST to hInsertAfter. This will make the new node to become the child of the
target node, and be added to the end of all child nodes under the target node.
Next we check if this node has any child node. If so, we find out all the child
nodes and call this function recursively to copy all the child nodes. For this step,
we use the newly created node as the target node, this will ensure that the
original tree structure will not change after copying.

In the final step, we call function CTreeCtrl::GetChileItem(...) to find out a node's
first child node, then call function CTreeCtrl::GetNextitem(...) repeatedly to get
the rest child nodes. The two functions will return NULL if no child node is found.

TVN_BEGINDRAG

Now we need to implement TVN_BEGINDRAG message handler. First, we need to
obtain the node that was clicked by the mouse cursor. To obtain the current
position of mouse cursor, we can call API function ::GetCursorPos(...). Since this
position is measured in the screen coordinate system, we need to further call
function CWnd::ScreenToClient(...) to convert the coordinates to the coordinate
system of the tree control window. Then we can set variable m_bIsDragging to
TRUE, and call function CTreeCtrl::HitTest(...) to find out if the mouse cursor is
over any node:

(Code omitted)

Next, we need to obtain dragging image list for this node. The dragging image list
is created by calling function CTreeCtrl::CreateDragImage(...). After this, the
address of the image list object is stored in variable m_pilDrag. If the image list
is created successfully, we call several member functions of CImageList to display
the dragging image and enter dragging mode. If not, we should not start
dragging, and need to set the content of pResult to a non-zero value, this will
stop dragging:

(Code omitted)

WM_MOUSEMOVE

Then we need to implement WM_MOUSEMOVE message handler. Whenever the
mouse cursor moves to a new place, we need to call function
CImageList::DragMove(...) to move the dragging image so that the image will
always follow the mouse's movement. We need to check if the mouse hits a new
node by calling function CTreeCtrl::HitTest(...). If so, we must leave dragging
mode by calling function CImageList:: DragLeave(...), highlight the new node by

calling function CTreeCtrl::SelectDropTarget(...), and enter dragging mode again
by calling function CTreeCtrl::DragEnter(...). The reason for doing this is that
when dragging is undergoing, the tree control window is locked and no update
could be implemented successfully. The following is the implementation of this
message handler:

(Code omitted)

WM_LBUTTONUP

Finally we need to implement WM_LBUTTONUP message handler. In this handler,
we must first leave dragging mode and end dragging. This can be implemented
by calling functions CImageList:: DragLeave(...) and CImageList::EndDrag()
respectively. Then, we need to delete dragging image list object:

(Code omitted)

The following code fragment shows how to judge if the source node can be copied
to become the child of the target node:

(Code omitted)

If the source and target are the same node, or target node does not have any
child node, or source node is the parent node (including indirect parent) of the
target node, the copy should not be implemented. Otherwise, we need to call
function MCTreeCtrl::CopyItem(...) to implement node copy:

(Code omitted)

If we want the node to be moved instead of being copied, we can delete the
source node after copying it. The source node and all its child nodes will be
deleted by calling function CTreeCtrl::DeleteItem(...).

Functions CWnd::SetCapture() and ::ReleaseCapture() are also called in
MCTreeCtrl:: OnBegindrag(...) and MCTreeCtrl::OnLButtonUp(...) respectively to
set and release the window capture. By doing this, we can still trap mouse
messages even if it moves outside the client window when dragging is
undergoing.

That's all we need to do for implementing drag-n-drop copying. By compiling and
executing the sample application at this point, we will be able to copy nodes
through mouse dragging. With minor modifications to the above message
handlers, we can easily implement both node copy and move as follows: when
CTRL key is held down, the node can be copied through drag-n-drop, when there
is no key held down, node will be moved.

5.15 List Control

A list control is another type of control that can be used to manage a list of
objects. Rather than storing items in a tree structure, a list control simply
organize them into an array. There is no parent or child node in a list control.

A list control can be viewed in different styles: 1) Normal icon style ¾ each item
is represented by a big icon. 2) Small icon style ¾ each item is represented by a
small icon. 3) List style ¾ all items are represented by small icons contained in a
vertical list. 4) Report style ¾ the details of all items are listed in several vertical
lists.

In MFC, list control is supported by class CListCtrl. Implementing list control is
similar to implementing tree control: the list control resource can be created in
dialog template, then the list control can be initialized in the dialog's initialization
stage. Each item in the list control can be associated with one or more images,
they will be used to represent the item in different styles. Usually we need to
associate two images for an item: one big image for normal style, and a small
image for other three styles. In general case, we need to prepare two image lists
to create a list control.

LV_COLUMN and LV_ITEM

The procedure of initializing list control is similar to that of tree control. First we
need to create two image lists: one for normal icon style; one for small icon
style. Then we need to call function CListCtrl::SelectImageList(...) to associate
the image lists with the list control. The following is the format of this function:

CImageList *CListCtrl::SetImageList(CImageList *pImageList, int nImageList);

Here pImageList is a pointer to the image list, and nImageList specifies the type
of image list: it could be LVSIL_NORMAL or LVSIL_SMALL, representing which
style the image list will be used for.

After the image list is set, we need to add columns for the list control (Figure 5-
12). This can be implemented by calling function CListCtrl::InsertColumn(...),
which has the following format:

int CListCtrl::InsertColumn(int nCol, const LV_COLUMN* pColumn);

The function has two parameters. The first one indicates which column is to be
added (0 based index), and the second one is a pointer to LV_COLUMN type
object:

typedef struct _LV_COLUMN {

UINT mask;

int fmt;

int cx;

LPSTR pszText;

int cchTextMax;

int iSubItem;

} LV_COLUMN;

Here, member mask indicates which of the other members contain valid values,
this is the same with structure LV_ITEM. Member fmt indicates the text alignment
for the column, it can be LVCFMT_LEFT, LVCFMT_RIGHT, or LVCFMT_CENTER.
Member cx indicates the width of the column, and iSubItem indicates its index.
Member pszText is a pointer to the text string that will be displayed for each
column. Finally, cchTextMax specifies the size of buffer pointed by pszText.

After columns are created, we need to add list items. For each list item, we need
to insert a sub-item in each column. For example, if there are three columns and
4 list items, we need to add totally 12 sub-items.

To add a sub-item, we need to stuff an LV_ITEM type object then call function
CListCtrl:: InsertItem(...), which has the following format:

int CListCtrl::InsertItem(const LV_ITEM* pItem);

The following is the format of structure LV_ITEM:

typedef struct _LV_ITEM {

UINT mask;

int iItem;

int iSubItem;

UINT state;

UINT stateMask;

LPSTR pszText;

int cchTextMax;

int iImage;

LPARAM lParam;

} LV_ITEM;

The usage of this structure is similar to that of structure TV_ITEM. For each item,
we need to use this structure to add every sub-item for it. Usually only the sub-
items contained in the first column will have an associated image (when being
displayed in report style), so we need to set image for each item only once.
Member iItem and iSubItem specify item index and column index respectively.

Sample

Sample 5.15\CCtl demonstrates how to use list control. It is a dialog-based
application generated by Application Wizard. In this sample, a four-item list is
implemented, which can be displayed in one of the four styles. When it is
displayed in report style, the control has four columns. The first column lists four
shapes: square, rectangle, circle, triangle. The second column lists the formula
for calculating their perimeter, and the third column lists the formula for
calculating their area.

Creating Image Lists

In the dialog template, the list control has an ID of IDC_LIST. In order to access
this control, a CListCtrl type variable m_listCtrl is added to class CCCtldlg through
using Class Wizard.

Four icon resources are added to the application for creating image lists. Their
IDs are IDI_ICON_SQUARE, IDI_ICON_RECTANGLE, IDI_ICON_CIRCLE and
IDI_ICON_TRIANGLE respectively. In the previous samples, we created image list
from bitmap resource all the time. Actually, it can also be created from icon
resources as well.

In function CCCtlDlg::OnInitDialog(), first two image lists are created and
selected into the list control:

(Code omitted)

We could use the same icon to create both 32(32 and 16(16 image lists. When
creating the 16(16 image list, the images will be automatically scaled to the size
specified by the image list. Since we allocate memory for creating image list in
dialog's initialization stage, we need to release it when the dialog box is being
destroyed. For this purpose, a WM_DESTROY message handler is added through
using Class Wizard, within which the image lists are deleted as follows:

(Code omitted)

If we release the memory used by image lists this way, we must set "Share
image list" style for the list control. This allows image list to be shared among
different controls. If we do not set this style, the image list will be destroyed
automatically when the list control is destroyed. In this case, we don't have to
release the memory by ourselves. To set this style, we need to invoke "List
control properties" property sheet, go to "More styles" page, and check "Share
image list" check box (Figure 5-13).

(Figure 5-13 omitted)

Creating Columns

First we need to create three columns, whose titles are "Shape", "Perimeter", and
"Area" respectively. The following portion of function CCCtlDlg::OnInitDialog()
creates each column:

(Code omitted)

The client window's dimension is retrieved by calling function
CWnd::GetClientRect(...) and then stored in variable rect. The horizontal size of
each column is set to 1/3 of the width of the client window.

Creating Sub-items

Since there are totally three columns, for each item, we need to create three sub-
items. The following is the portion of function CCCtlDlg::OnInitDialog() that
demonstrates creating one sub-item:

(Code omitted)

Function CListCtrl::InsertItem(...) is called to add a list item and set its first sub-
item. The rest sub-items should be set by calling function CListCtrl::SetItem(...).
For these sub-items, we don't need to set image again, so LVIF_IMAGE flag is not
applied when function CListCtrl::SetItem(...) is called.

Changing List Style Dynamically

The style of the list control can be set in property sheet "List control properties"
before the application is compiled(see Figure 5-14). But, sometimes we may
want to provide the user with the power of changing this style dynamically. When
the program is running, we can call API function ::SetWindwoLong(...) to change
the application's style. For list control, we can choose from one of the following
styles: LVS_ICON, LVS_SMALLICON, LVS_LIST and LVS_REPORT.

In the sample, four radio buttons are added to the dialog template for selecting
different styles. Their IDs are IDC_RADIO_ICON, IDC_RADIO_SMALLICON,
IDC_RADIO_LIST and IDC_RADIO_REPORT respectively. We need to handle
BN_CLICKED message for the four radio buttons in order to respond to mouse
events. These message handlers are added through using Class Wizard. Within
the member functions, the style of the list control is changed according to which
radio button is being clicked. The following is one of the message handlers that
sets the style of the list control to "Normal Icon":

(Code omitted)

First, the list control's old style is retrieved by calling function
::GetWindowLong(...), and is bit-wisely ANDed with LVS_TYPEMASK, which will
turn off all the style bits. Then style LVS_ICON is added to the window style
(through bit-wise ORing), and function ::SetWindowLong(...) is called to update
the new style. Both function ::GetWindowLong(...) and ::SetWindowLong(...)
require a window handle, it could be obtained by calling function CWnd::
GetSafeHwnd().

The list control and tree control can also be implemented in SDI and MDI
applications. In this case, we need to use classes derived from CListView or
CTreeView. Although the creating procedure is a little different from that of a
dialog box, the properties of the controls are exactly the same for two different
types of applications. We will further explore list control and tree control in
chapter 15.

5.16 Tab Control

In the previous sample, we used radio buttons to let the user set the style of list
control dynamically. An alternate way of doing this is to use tab control, which is
widely used in various types of applications. Usually a tab control is used
together with dialog box to implement property sheets, which can let the user
easily switch among different property pages. This topic will be discussed in a
chapter 7. Here, we will discuss some basics on how to implement tab control
and handle its messages.

Using Tab Control

In MFC, tab control can be implemented by using class CTabCtrl. A tab control
can be associated with an image list, so we can display both image and text on
each tab. The steps of using a tab control is very similar to that of list control and
tree control: first we need to add tab control resource to the dialog template;
then in the dialog's initialization stage, we need to create the image list, select it
into the tab control, and initialize the tab control. The function that can be used
to assign image list to a tab control is CTabCtrl::SetImageList(...), which has the
following format:

CImageList *CTabCtrl::SetImageList(CImageList *pImageList);

The function that can be used to add an item to the tab control is
CTabCtrl::InsertItem(...):

BOOL CTabCtrl::InsertItem(int nItem, TC_ITEM *pTabCtrlItem);

The first parameter of this function is the index of the tab (zero based), and the
second parameter is a pointer to TC_ITEM type object. Before calling this
function, we need to stuff structure TC_ITEM with tab's information:

typedef struct _TC_ITEM {

UINT mask;

UINT lpReserved1;

UINT lpReserved2;

LPSTR pszText;

int cchTextMax;

int iImage;

LPARAM lParam;

} TC_ITEM;

We need to use three members of this structure in order to create a tab with both
text and image: mask, pszText and iImage. Member mask indicates which of the
other members of this structure contains valid data; member pszText is a pointer
to string text; and iImage is an image index to the associated image list. We see
that using this structure is very similar to that of TV_ITEM and LV_ITEM.

To respond to tab control's activities, we need to add message handlers for it.
The most commonly used messages of tab control are TCN_SELCHANGE and
TCN_SELCHANGING, which indicate that the current selection has changed or the
current selection is about to change respectively.

Sample 5.16\CCtl demonstrates how to use tab control, it is based on sample
5.15\CCtl. In this sample, four radio buttons are replaced by a tab control
IDC_TAB (see Figure 5-14). Also, message handlers of radio buttons are
removed. In order to access the tab control, a CTabCtrl type control variable
m_tabCtrl is added to class CCCtlDlg through using Class Wizard. Beside this,
four bitmap resources IDB_BITMAP_ICON, IDB_BITMAP_SMALLICON,
IDB_BITMAP_LIST and IDB_BITMAP_REPORT are added to the application to
create image list for tab control.

In function CCCtlDlg::OnInitDialog(), first the image list is created and assigned
to the tab control. Next, four items are added to the tab control:

(Code omitted)

Macro TAB_BMP_WIDTH and TAB_BMP_HEIGHT are defined as the width and
height of the bitmaps. In function CCCtlDlg::Destroy(), the following statements
are added to delete the tab items and the image list used by the tab control:

(Code omitted)

Handling Tab Control Message

We trap message TCN_SELCHANGE to respond to the changes on the tab control.
After receiving this message, we call function CTabCtrl::GetCurSel() to obtain the
newly selected item, then call function ::SetWindowLong(...) to set the style of
the list control accordingly. In the sample, function
CCCtlDlg::OnSelchangeTab(...) is added to class CCCtlDlg through using Class
Wizard for handling this message. It is implemented as follows:

(Code omitted)

With the above implementation, we can change the list control's style
dynamically through using the tab control.

5.17 Animate Control and Progress Control

Using Animate Control and Progress Control

Animate and progress controls are very useful, both of them can be implemented
in a dialog box very easily. In MFC, the classes used to implement animate and

progress controls are CAnimateCtrl and CProgressCtrl respectively.

Sample 5.17\CCtl demonstrates how to use two types of controls. It is a dialog-
based application generated by Application Wizard.

Like any other common controls, the first step of using animate and progress
controls is to add their resources to the dialog template. There are very few
styles that can be customized, and the meanings of them are all self-explanatory.
To access the controls, we can use Class Wizard to add member variables for
them.

For animate control, the functions we need to call for implementing animation are
CAnimateCtrl::Open(...) and CAnimateCtrl::Play(...). The first function lets us
open an animation resource either from a file or from an AVI resource. The
second function lets us play the loaded AVI data.

For progress control, we need to call function CProgressCtrl::SetRange(...) to set
the upper and lower limits, call CProgressCtrl::SetStep(...) to specify the
incremental step, and call CProgressCtrl:: StepIt() to advance the current
position of progress bar. Each time we call this function, the progress bar will
advance one step. In order to let the progress bar advance continuously, we need
to link it to some events that happen all the time. In the sample, a timer is used
to generate this type of events.

Timer

Timer is a very useful resource in Windows(operating system. Once we set the
timer and specify the time out period, it will start to count down and send us a
WM_TIMER message when time out happens. The timer can be set within any
CWnd derived class by calling function CWnd::SetTimer(...). Timers with different
IDs are independent upon one another, so we can set more than one timer to
handle complex situation.

The following is the prototype of function CWnd::SetTimer(...):

UINT CWnd::SetTimer

(

UINT nIDEvent, UINT nElapse,

void(CALLBACK EXPORT *lpfnTimer)(HWND, UINT, UINT, DWORD)

);

The function has three parameters. Parameter nIDEvent is an event ID. This ID
can be any integer, and we need to use different ID for different event in order to
distinguish between them. Parameter nElapse specifies time out period, whose
unit is millisecond. Parameter lpfnTimer is a pointer to a callback function that
will be used to handle time out message. We can also pass NULL to this
parameter and add WM_TIMER message handler to receive this message.

In the sample, the IDs of the animate control and progress control are
IDC_ANIMATE and IDC_PROGRESS. Also, the variables used to access them are
m_animateCtrl and m_progressCtrl respectively.

Custom Resource

The AVI data can be included in the application as a resource. However,
Developer Studio does not support this kind of resource directly. So we have to
treat it as a custom resource. We can create AVI resource from a "*.avi" file
through following steps: 1) Execute Insert | Resource command, then click
"Import" button from the "Insert resource" dialog box. 2) From the popped up
"File open" dialog box, browse and select a "*.avi" file and open it (we can use
"5.17\CCtl\search.avi" or any other "*.avi" file for this purpose). 3) When we are
asked to provide the resource type, input "AVI". 4) Name the resource ID as
IDR_AVI.

Sample Implementation

In the dialog box's initialization stage, we need to initialize the animate control,
progress control and set timer as follows:

(Code omitted)

First, function CAnimateCtrl::Open(...) is called to open the animation resource,
then function CAnimateCtrl::Play(...) is called to play the AVI data. When doing
this, we pass 0 to its first parameter and -1 to the second parameter, this will let
the animation be played from the first frame to the last frame. The third
parameter is also -1, this means the animation will be played again and again
without being stopped.

Then we initialize the range of progress control from 0 to 50, incremental step 2,
and a timer with time out period of 500 milliseconds is set.

Message WM_TIMER can be handled by adding message handlers, this can be
easily implemented through using Class Wizard. In the sample, this member
function is implemented as follows:

(Code omitted)

The only parameter of this function is nIDEvent, which indicates the ID of the
timer that has just timed out. If we have two or more timers set within the same
window, by examining this ID we know which timer has timed out. In the sample,
when timer times out, we simply call function CProgressCtrl::StepIt() to advance
the progress bar one step forward.

Summary:

1) A spin control must work together with another control, which is called the
"Buddy" of the spin control. Usually the "Buddy" is an edit box, but it could be
any other types of controls such as button or static control.

2) To set buddy automatically, we must make sure that the buddy window is the
previous window of the spin control in Z-order.

3) The buddy can also be set by calling function CSpinButtonCtrl::SetBuddy(...).

4) If we set "Set buddy integer" style, the spin control will notify the buddy
control to update its contents whenever the position of the spin control changes.
If we set this style, the buddy edit box can display only integers.

5) If we want to customize the behavior of buddy control, we need to handle
message UDN_DELTAPOS. This message will be sent when the position of the
spin control changes. By doing this, we can let the buddy control display text
strings or bitmap images.

6) Slider control shares the same message with scroll bars. By handling message
WM_HSCROLL (for horizontally orientated sliders) and WM_VSCROLL (for
vertically orientated sliders), we can trap the mouse activities on the slider.

7) List box can be implemented in different styles: single selection, multiple
selection, extended selection. By default, the items in the list box will contain
only characters, and they will be alphabetically sorted. These styles can be
changed by calling member functions of CListCtrl.

8) A list box can be used to display directories and files contained in a specific
directory by calling function CListCtrl::Dir(...).

9) We can handle LBN_... type messages to customize the default behavior of a
list control.

10) A combo box is composed of an edit box and a list box. Because they are not
created by MFC code, we can not access them through the normal method.

11) To trap RETURN, ESC keys for combo box, we need to override function
CWnd:: PreTranslateMessage(...).

12) To implement subclass for edit box contained in a combo box, we need to call
function CWnd:: SubclassWindow(...) instead of CWnd::SubclassDlgItem(...).

13) To create owner-draw list box or combo box, first we need to set "Owner
draw" style, then override WM_MEASUREITEM and WM_DRAWITEM message
handlers.

14) Image list is used by tree control, list control and tab control. Once an image
list is assigned to a control, the images contained in the list can be accessed
through their zero-based indices.

15) To use a tree control, we can create its resource in the dialog template. Then
in the dialog's initialization stage, we can create the tree structure. A tree item
can be added to the control by stuffing a TV_ITEM type object, then calling
function CTreeCtrl::InsertItem(...).

16) We need to handle message TVN_ITEMEXPANDING or TVN_ITEMEXPANDED
to customize a tree control's expanding and collapsing behaviors.

17) We need to set "Edit labels" style and handle TVN_ENDLABELEDIT message
to enable label editing for tree control.

18) We need to handle messages TVN_BEGINDRAG, WM_MOSUEMOVE, and
WM_LBUTTONUP to enable drag-n-drop for tree control.

19) The list box can be displayed in four different styles: Normal (big) icon style,
small icon style, list style, and report style. We can select one style when the list
box resource is being created. If we want to change the style dynamically, we
need to call function ::SetWindowLong(...).

20) Because list control can be used to represent items in different styles, usually
we need to prepare two image lists (big icon and small icon) for a list control.

21) To create a list control, we need to create columns first. For each column, we
need to create sub-items for all the items contained in the list.

22) To create a column for a list control, we need to stuff an LV_COLUMN type
object and call function CListCtrl::InsertColumn(...). To create an item, we need
to stuff an LV_ITEM type object and call function CListCtrl::InsertItem(...). To set
the rest sub-items, we need to stuff LV_ITEM type objects and call function
CListCtrl::SetItem(...).

23) To use tab control, first we need to create tab control resource in the dialog
template. Then in the dialog's initialization stage, we need to create and select
the image list, stuff TV_ITEM type objects and call function
CTabCtrl::InsertItem(...) to add items.

24) The animate control can be used to play AVI data. Because this is not a
standard resource supported in Developer Studio, we need to create custom
resource if we want to include AVI data in an application as a resource.

25) The progress control is used to indicate the progress of events. In order to
synchronize the progress bar with the events, we need to advance the progress
bar within the event's message handler.

BACK TO INDEX

&nb

Chapter 6 Dialog Box

Dialog box is very common for all types of applications, it is used in almost every
program. Usually a dialog box is built from resources: we design everything in
the dialog template, then use a CDialog derived class to implement it. We can
call function CDialog::DoModal() to invoke the dialog box, use member variables
to access the common controls, and add message handlers to process mouse or
keyboard related events.

In this chapter we will discuss some topics on customizing normal dialog boxes.
By using the methods introduced in this chapter, we are able to make our dialog
boxes more user friendly.

6.1 Modeless Dialog Box

Modal and Modeless Dialog Box

There are two types of dialog boxes in Windows(system: modal dialog box and
modeless dialog box.

A modal dialog box does not allow the user to switch away from it after it is
invoked. We must first dismiss the dialog box before switching to any other
window.

It is very easy to implement a modal dialog box: first create a dialog box
template, then derive a new class from class CDialog; next we can use the new
class to declare a variable which can be used to call function
CDialog::DoModal(). Please note that when deriving the new class, we must
make sure that it contains the ID of the dialog template.

We can check this by looking at the class definition. By default, there should be a
member IDD that is assigned the ID of dialog template:

......

//{{AFX_DATA(CMLDialog)

enum { IDD = IDD_DIALOG };

//}}AFX_DATA

......

If no ID is assigned to this member, the dialog box will not be created correctly.

A modeless dialog box allows the user to switch to other windows without
dismissing it first. Because of this, the variable used to implement the modeless
dialog box should not go out of scope in the dialog box's lifetime. Usually we
need to use member variable declared in the class to create modeless dialog box
rather than using a local variable.

We can not call function CDialog::DoModal() to implement modeless dialog box,
because this function is designed solely for modal dialog box. The correct
functions that should be used for modeless dialog box are CDialog::Create(...)
and CWnd::ShowWindow(...).

The following shows the prototypes of function CDialog::Create(...):

BOOL CDialog::Create(UINT nIDTemplate, CWnd* pParentWnd = NULL);

BOOL CDialog::Create(LPCTSTR lpszTemplateName, CWnd* pParentWnd =
NULL);

Both versions of this function have two parameters, the first of which is the
template ID (either an integer ID or a string ID), the second is a CWnd type
pointer which specifies the parent window of the dialog box.

Function CWnd::ShowWindow(...) has the following format:

BOOL CWnd::ShowWindow(int nCmdShow);

It has only one parameter, which can be set to SW_HIDE, SW_MINIMIZE,
SW_SHOW... and so on to display the window in different styles.

For example, if class CMyDialog is derived from CDialog, and the dialog template
ID is IDD_DIALOG, we can declare a variable m_dlg in any class (for example,
CDocument) then do the following in a member function to implement a
modeless dialog box:

m_dlg.Create(IDD_DIALOG);

m_dlg.ShowWindow(SW_SHOW);

Sample

Sample 6.1\DB demonstrates how to implement modeless dialog box. It is a
standard SDI application created by Application Wizard. To make the modeless
creation procedure simpler, a member function DoModeless() is implemented in
the derived class so that it can be used just like function CDialog:: DoModal().

Please note that when the user clicks "OK" or "Cancel" button to dismiss the
dialog box, the window will become hidden rather than being destroyed. The
window will be destroyed only when the variable goes out of scope (e.g. when
we use delete keyword to release the buffers if they are allocated by new key
word, or after function returns if the variable is declared locally). So even after
the dialog box is closed by clicking "OK" or "Cancel" button, it still can be
restored by calling function CWind::ShowWindow(...) using SW_SHOW
parameter.

In the sample application, a dialog template IDD_DIALOG_MODELESS is
prepared for modeless dialog box implementation. A new class CMLDialog is
derived from CDialog, and a CWnd type pointer m_pParent along with a member
function DoModeless() are declared in the class:

(Code omitted)

The constructor of CMLDialog is modified as follows:

CMLDialog::CMLDialog(CWnd* pParent /*=NULL*/)

: CDialog(CMLDialog::IDD, pParent)

{

//{{AFX_DATA_INIT(CMLDialog)

//}}AFX_DATA_INIT

m_pParent=pParent;

}

When we implement a modal dialog box using class CDialog, the parent window

needs to be specified only in the constructor. When calling CDialog::Create(...)
to implement a modeless dialog box, we need to specify the parent window
again even if it has been passed to the constructor. To let function DoModeless()
has the same format with function CDialog::DoModal(), we store the pointer to
the parent window in variable CMLDialog::m_pParent so that it can be used later
in function DoModeless(). In the sample, function CMLDialog::DoModeless() is
implemented as follows:

(Code omitted)

Since this function could be called after the dialog box has been invoked, first we
need to check if a valid window has been created by calling function
CWnd::GetSafeHwnd(). If the returned value is NULL, the window has not been
created yet. In this case, we should call function CDialog::Create(...) to create
the window. If the returned value is not NULL, there are two possibilities: the
window may be currently active or hidden. We can call function
CWnd::IsWindowVisible() to check the dialog box's visual state. If the dialog box
is hidden, we should call CWnd::ShowWindow(...) to activate it.

In the sample, a command Dialog Box | Modeless is added to the mainframe
menu IDR_MAINFRAME, whose ID is ID_DIALOGBOX_MODELESS. Also, a
WM_COMMAND message handler is added for this command through using Class
Wizard, and the corresponding member function is
CDBDoc::OnDialogboxModeless(). The following is its implementation:

void CDBDoc::OnDialogboxModeless()

{

m_dlgModeless.DoModeless();

}

With the new class, it is equally easy to implement a modeless or modal dialog
box. The only difference between creating two type of dialog boxes is that for
modeless dialog box, the variable can not be declared locally.

6.2 Property Sheet

Property sheet provides a very nice user interface, it allows several dialog
templates to be integrated together, and the user can switch among them by
using tab control. This is especially useful if there are many common controls
that need to be included in a single dialog template.

Because property sheet is very similar to dialog box, we can create a dialog box

then change it to property sheet. The reason for creating property sheet this way
is because currently Developer Studio does not support direct implementation of
property sheet.

In MFC, there are two classes that should be used to implement property sheet:
CPropertySheet and CPropertyPage. The former class is used to create a frame
window that contains tab control, the second class is used to implement each
single page.

To implement a property sheet, we first need to derive a class from
CPropertySheet, then declare one or more CPropertyPage type member variables
within it. Each variable will be associated with a dialog template. Because
CPropertyPage is derived from class CDialog, all the public and protected
members of CDialog are accessible in the member functions of CPropertyPage.

Sample 6.1-1\DB demonstrates how to create application based on property
sheet. First it is generated as a dialog based application by using Application
Wizard (the default classes are CDBApp and CDBDlg), then the base class of
CDBDlg is changed from CDialog to CPropertySheet. Since class CPropertySheet
does not have member IDD to store the dialog template ID, we need to delete
the following line from class CDBDlg:

enum { IDD = IDD_DIALOG_DB };

The default dialog box template IDD_DIALOG_DB will not be used, so it is also
deleted from the application resources. The following is the modified class:

(Code omitted)

We also need to find all the keyword CDialog in the implementation file of
CDBDlg and change them to CPropertySheet. The changes should happen in the
following functions: the constructor of CDBDlg, function DoDataExchange(...),
OnInitDialog(), OnSysCommand(...), OnPaint(...), and message mapping
macros.

Next we need to create each single page. The procedure of creating a property
page is the same with creating a dialog box, except that when adding new class
for a dialog box template, we must derive it from class CPropertyPage. In the
sample, three dialog templates are added to the application, their IDs are
ID_DIALOG_PAGE1, ID_DIALOG_PAGE2 and ID_DIALOG_PAGE3 respectively.
Three classes CPage1, CPage2 and CPage3 are also added through using Class
Wizard, which are all derived from CPropertyPage. When doing this, we need to
provide the ID of the corresponding dialog template.

In class CDBDlg, a new member variable is declared for each page:

(Code omitted)

The pages should be added in the constructor ofCPropertySheet by calling
function CPropertySheet::AddPage(...). The following is how each page is added
in the sample:

(Code omitted)

Function CPropertySheet::AddPage(...) has only one parameter, it is a pointer to
CPropertyPage type object.

These are the necessary steps for implementing property sheet. For each
property page, we can also add message handlers for the controls, the procedure
of which is the same with that of a standalone dialog box.

By default, the property sheet will be implemented in "tab" mode: there will be a
tab control in the property sheet, which can be used to select property pages.
The property sheet can also be implemented in "wizard" mode, in which case tab
control will be replaced by two buttons (labeled with "Previous" and "Next"). In
this mode, the pages can only be selected sequentially through button clickings.

To enable wizard mode, all we need to do is calling function CPropertySheet::
SetWizardMode()after all the pages have been added. For example, if we want to
enable wizard mode in the sample, we should implement the constructor of
CDBDlg as follows:

(Code omitted)

Sample 6.2-2\DB is the same with sample 6.2-1\DB, except that the property
sheet is implemented in wizard mode.

If we need to implement a property sheet dialog box in an SDI or MDI
application, most of the steps are still the same. We can start by creating a new
CPropertySheet based class, then adding dialog templates and CPropertyPage
based classes, using them to declare new variables in CPropertySheet derived
class, calling function CPropertySheet::AddPage(...) in its constructor. We can
call function CPropertySheet::DoModal() at anytime to invoke the property
sheet.

6.3 Modeless Property Sheet

Because property sheet is very similar to dialog box, implementation of modeless
property sheet is also similar to that of modeless dialog box: when invoking the
property sheet dialog box, instead of calling function

CPropertySheet::DoModal(), we need to call CPropertySheet::Create(...) and
CWnd:: ShwoWindow(...). We can use exactly the same method discussed in
section 6.1 to implement modeless property sheet.

Sample 6.3\DB demonstrates how to implement modeless property sheet. It is a
standard SDI application generated by Application Wizard. A command Property
Sheet | Modeless is added to mainframe menu IDR_MAINFRAME, whose ID is
ID_PROPERTYSHEET_MODELESS. A WM_COMMAND message handler is also
added for this command, and the corresponding function is
CDBDoc::OnPropertysheetModeless().

A new class CMLPropertySheet is defined to implement modeless property sheet,
whose base class is CPropertySheet. Like what we did in sample 6.1\DB, function
DoModeless() is declared in class CMLPropertySheet, which can be used to
invoke the property sheet.

Three dialog box templates IDD_DIALOG_PAGE1, IDD_DIALOG_PAGE2 and
IDD_DIALOG_PAGE3 are created to implement property pages. Also three new
classes CPage1, CPage2 and CPage3 are derived from CPropertyPage. A CWnd
type pointer m_pParentWnd and three other member variables declared by
CPage1, CPage2 and CPage3 are added to class CMLPropertySheet. The following
is the modified class:

(Code omitted)

In the constructor of CMLPropertySheet, we need to store the address of parent
window to m_pParentWnd and add the property pages. The constructor of
CPropertySheet has two versions, and we need to override both of them:

(Code omitted)

Next, function CMLPropertySheet::DoModeless() is implemented as follows:

(Code omitted)

Everything is the same with that of sample 6.1\DB, except that here we need to
call function CPropertySheet::Create(...) instead of CDialog::Create(...).

By now class CMLPropertySheet is ready for use. We can declare a
CMLPropertySheet type pointer in class CDBDoc:

(Code omitted)

The constructor and destructor of class CDBDoc are modified to initialize and
release the buffers if necessary:

(Code omitted)

It is possible that the variable is not initialized when the application is closed, so
we need to check if m_ptrDlg is NULL before deleting it.

Finally, function CDBDoc::OnPropertysheetModeless() is implemented as follows:

(Code omitted)

If m_ptrDlg is NULL, we need to initialize it. Then we call
CMLPropertySheet::DoModless() each time the Property Sheet | Modeless
command is executed. This member function will take care everything so there is
no need for us to check the current state of the property sheet and implement
different operations.

6.4 Sizes

In this section we are going to discuss some window sizes that is important for
dialog boxes.

Initial Size

The initial size is the dimension of a dialog box when it first pops up. By default,
a dialog box's initial size is determined from the font used by the dialog box and
the size of its dialog template. If we want to make change to its initial size, we
can call either CWnd::SetWindowPos(...) or CWnd::MoveWindow(...) within
function CDialog::OnInitDialog(). The difference between above two functions is
that CWnd:: SetWindowPos(...) allows us to change a window's X-Y position and
Z-order, while CWnd::MoveWindow(...) allows us to move the window only in the
X-Y plane.

Dialog Box Unit

When creating a dialog template, we can read its dimension in the status bar of
Developer Studio (Figure 6-1). However this size is measured in dialog box unit
rather than screen pixels. This means if we create a dialog template with a size
of 100(100 (measured in dialog box unit), its actual size will not be 100 pixel (
100 pixel. For any dialog template, its horizontal base unit is equal to the
average width of the characters that is used by the template, and its vertical
base unit is equal to the height of the font. The dialog box is measured by the
base units: each horizontal base unit is equal to 4 horizontal dialog units and
each vertical base unit is equal to 8 vertical dialog units. This is a very complex
calculation, fortunately in class CDialog there is a member function
CDialog::MapDialogRect(...) that can be used to implement the dimension

conversion so we do not need to calculate the details.

If we want the initial size of a dialog box to be exactly the same with its template
size, we need to call function CDialog::MapDialogRect(...) to convert its template
size to screen pixels then call CWnd:: MoveWindow(...) to resize the dialog box
before it is displayed.

Tracking Size and Maximized Size

There are two types of tracking sizes: minimum tracking size and maximum
tracking size, which correspond to limit sizes that can be set to a window by
dragging one of its resizable border. The maximized size of a window is the size
when it is in the maximized state (when a window is maximized, it doesn't have
to take up the whole screen). There is no "minimized size" here because when a
window is minimized, it will become an icon.

These sizes can all be customized. To provide user defined sizes, we can override
function CWnd:: OnGetMinMaxInfo(...), which will be called when any of the
above sizes is needed by the system. We can provide our own sizes within the
overridden function.

Function CWnd::OnGetMinMaxInfo(...) has the following format:

afx_msg void CWnd::OnGetMinMaxInfo(MINMAXINFO *lpMMI);

It is the handler of WM_GETMINMAXINFO message.

Whenever the system needs to know the tracking sizes or maximized size of a
window, it sends a WM_GETMINMAXINFO message to it. In MFC, this message is
handled by function CWnd:: OnGetMinMaxInfo(...). The input parameter of this
function is a MINMAXINFO type pointer, if we want to customize the default
implementation, we can change the members of MINMAXINFO. Structure
MINMAXINFO is defined as follows:

typedef struct tagMINMAXINFO {

POINT ptReserved;

POINT ptMaxSize;

POINT ptMaxPosition;

POINT ptMinTrackSize;

POINT ptMaxTrackSize;

} MINMAXINFO;

Here members ptMinTrackSize and ptMaxTrackSize specify the minimum and
maximum tracking sizes, ptMaxSize specifies maximized size, and ptMaxPosition
specifies the upper-left corner position of a window when it is first maximized.

Sample

Sample 6.4\DB demonstrates how to customize these sizes. It is a dialog based
application created from Application Wizard. In the sample, the dialog's
minimum tracking size is set to its dialog template size. Also, the maximum
tracking size and the maximized size are customized.

To let the dialog box be able to maximize and minimize, we must set the two
styles: "Minimize Box", "Maximize Box". To let it be able to resize, we must also
set "Resizing" style (Figure 6-2).

In the sample, message handler of WM_GETMINMAXINFO is added through using
Class Wizard. The function is implemented as follows:

(Code omitted)

Here MIN_X_SIZE and MIN_Y_SIZE are defined as the dialog template size that
is read from Developer Studio when the dialog resource is being edited. Because
this size is the client area size of the dialog box (when a dialog box is created,
caption bar, borders will be added), we need to add the dimensions of caption
bar and border in order to make the dialog size exactly the same with its
template size. The dimensions of caption bar and border can be retrieved by
calling API function ::GetSystemMetrics(...) with appropriate parameters passed
to it. This function allows us to retrieve many system configuration settings. The
following is the function prototype and a list of commonly used parameters:

int ::GetSystemMetrics(int nIndex);

(Table omitted)

In the sample, the maximized size of the dialog is set to 1/4 of the desk top
screen size. When the application is first maximized, it will be positioned at top-
left corner (0, 0).

The dialog box's initial size is set in function CDialog::OnInitDialog():

(Code omitted)

The dialog box's initial size is a little bigger than its minimum tracking size.

The above sizes are not unique to dialog boxes. In fact, any window has the
above sizes, and can be customized with the same method.

6.5 Customizing Dialog Box Background

Background Drawing

Generally all dialog boxes have a gray background. Sometimes it is more
desirable to change dialog box's background to a custom color, or, we may want
to paint the background using a repeated pattern. To customize a dialog box's
background, we need to handle message WM_ERASEBKGND, and draw the
custom background after receiving this message. All classes that are derived
from CWnd will inherit function CWnd::OnEraseBkgnd(...), which has the
following format:

BOOL CWnd::OnEraseBkgnd(CDC *pDC)

{

}

Here, pointer pDC can be used to draw anything on the target window. For
example, we can create solid brush and paint the background with a custom
color, or we can create pattern brush, and paint the background with certain
pattern. Of course, bitmap can also be used here: we can draw our own bitmap
repeatedly until all of the dialog box area is covered by the bitmap patterns.

Sample

Sampel 6.5\DB demonstrates background customization. It is a standard dialog-
based application generated from Application Wizard. In the sample, instead of
using a uniform color, the dialog box paints its background with a bitmap image
(Figure 6-3).

Because WM_ERASEBKGND is not listed as a dialog box message, first we need
to customize the filter settings for this application. We can do this by invoking
Class Wizard, clicking "Class Info" tab then changing the default setting in combo
box "Message Filter" from "Dialog" to "Window". By going back to "Message
maps" page now, we can find WM_ERASEBKGND in "Message" window, and add
a message handler for it. The function name should be
CDBDlg::OnEraseBkgnd(...).

In the sample, a bitmap resource IDB_BITMAP_DLGBGD is added to the
application, which will be used to draw the background of the dialog box. In
function CDBDlg::OnEraseBkgnd(...), this bitmap is painted repeatedly until all
dialog box area is covered by it:

(Code omitted)

First function CBitmap::LoadBitmap(...) is called to load the bitmap resource,
then its dimension is retrieved by calling function CBitmap::GetBitmap(...). Next,
function CWnd::GetClientRect(...) is called to obtain the size of the client area of
the dialog box. Then we calculate the number of loops required to repeat
drawing in both horizontal and vertical directions in order to cover all the client
area. The results are stored in two local variables nHor and nVer. Then, a
memory DC is created, and the bitmap image is selected into this DC. Next,
function CDC::BitBlt(...) is called enough times to paint the bitmap to different
locations of the dialog box. Finally a TRUE value is returned to prevent the
background from being updated by the default implementation.

Changing the Background of Common Controls

If the dialog box includes some other common controls such as edit box, list box,
check box or radio button, we will see the undesirable effect: the background of
these controls is still painted with the default color, and this makes the
appearance of the dialog box not harmonic.

To change the background color of the common controls, we need to handle
message WM_CTLCOLOR. The message handler can be added through using
Class Wizard, and the default member function looks like the following:

HBRUSH CDBDlg::OnCtlColor(CDC *pDC, CWnd *pWnd, UINT nCtlColor)

{

return CDialog::OnCtlColor(pDC, pWnd, nCtlColor);

}

This function has three parameters. The first parameter is a pointer to the device
context of the target window; the second is a pointer to the common control
contained in the dialog box whose background is to be customized; the third
parameter specifies the control type, which could be CTLCOLOR_BTN,
CTLCOLOR_EDIT, CTLCOLOR_LISTBOX..., indicating that the control is a button,
an edit box, a list box, and so on.

We can return a brush handle that can be used to paint the background of the
control. We can also let the control to have a transparent background, in this
case we must return a NULL brush handle.

In order to demonstrate how to customize the background of the common
controls, in the sample, an edit box, a check box, two radio buttons, a static
text, a scroll bar, a list box and a simple combo box are added to the application.
Also, WM_CTLCOLOR message handler is added and the corresponding function
CDBDlg::OnCtlColor(...) is implemented as follows:

(Code omitted)

Stock Objects

In the above implementation, the background of different controls is painted
using different brushes: the button and static control have a transparent
background; the background of the list box and scroll bar is painted with a gray
brush; the background of the message box is painted with a light gray brush.
Here, all the brushes are obtained through calling function ::GetStockObject(...)
rather than being created by ourselves.

In Windows(, there are a lot of predefined stock objects that can be used. These
objects include brushes, pens, fonts and palette. The predefined brushes include
white brush, black brush, gray brush, light gray brush, dark gray brush, and null
(hollow) brush.

Function ::GetStockObject(...) will return a GDI object handle (a brush handle in
our sample). If we attach the returned handle to a GDI object, we must detach it
instead of deleting the object when it is no longer useful.

Text Foreground and Background

Now the edit box, static control and list box all have transparent background. But
these controls also contain text. Since a character also has both foreground and
background areas (Figure 6-4), if we don't set the text's drawing mode, its
background area may be drawn with an undesirable color (Figure 6-5).

(Figure 6-4, 6-5 omitted)

We can call function CDC::SetBkMode(...) and use TRANSPARENT flag to set
transparent background drawing mode for text, otherwise it will be drawn with
the default background color.

The background of a 3-D looking pushdown button can not be changed this way.
Also, if we include drop down or drop list combo box, the background color of its

list box will not be customized by this method because it is not created as the
child window of the dialog box. To modify it, we need to derive new class from
CComboBox and override its OnCtlColor(...) member function.

6.6 Resizing the Form View

Form view is very similar to a dialog box. Usually we create form view from a
dialog box template, which can contain all the standard common controls. While
they are similar, a form view is usually created with a document/view structure,
and has some properties that a standard dialog box lacks. For example, a form
view will be automatically implemented with scroll bars. If the window size
becomes smaller than the size of the dialog template, scroll bars will
automatically be activated. They can be scrolled to allow the user to see the
hidden part of the dialog.

Since a form view is usually resizable, we sometimes need to move and resize
the common controls contained in the form view to make its appearance well
balanced. For example, if we have an edit box embedded in the form view,
instead of fixing its size, we may want to adjust it dynamically according to the
dimension of the form view. This is usually a desired feature of form view
because it will make the controls and the window well balanced.

Coordinates Conversion

Every window can be moved and resized by calling function
CWnd::MoveWindow(...) or CWnd:: SetWindowPos(...). Also, a window's size
and position can be retrieved by calling function CWnd:: GetClientRect(...) and
CWnd::GetWindowRect(...). The points retrieved using the former function are
measured in the client window's coordinate system, and the points retrieved
from the latter function are measured in the screen (desktop) coordinate system.
To convert coordinates from one system to another, we can call function
CWnd::MapWindowPoints(...) or CWnd::ScreenToClient(...).

For example, if there are two windows: window A and window B, which are
attached two CWnd type variables wndA and wndB. If we want to know the size
and position of window A measured in window B's coordinate system, we can
first obtain the size and position of window A in its local coordinate system, and
then convert them to window B system as follows:

wndA.GetClientRect(rect);

wndA.MapWindowPoints(&wndB, rect);

Or we can find the position and size of window A in the screen coordinate
system, and call CWnd:: ScreenToClient(...) to convert them to window B's

coordinate system:

wndA.GetWindowRect(rect);

wndB.ScreenToClient(rect);

Sample

When the user resizes a window, a WM_SIZE message will be sent to that
window. We can handle this message to resize and move the controls contained
in the dialog template.

Sample 6.6\DB demonstrates how to resize the common controls contained in
the form view dynamically. It is a standard SDI application generated from the
Application Wizard. When generating the application, CFormView is selected as
the base class of the view in the last step. After the application is generated, the
following controls are added to the dialog template: an edit box, a static group
control, two buttons. The IDs of these controls are IDC_EDIT, IDC_STATIC_GRP,
IDC_BUTTON_A and IDC_BUTTON_B respectively.

If we compile and execute the application at this point, the application will
behave awkwardly because if we resize the window, the sizes/positions of the
controls will not change, this may make the window not well balanced (Figure 6-
6).

We need to remember the original sizes and positions of the embedded controls
and base their new sizes and positions on them. In the sample, four CRect type
variables are declared in class CDBView for this purpose:

(Code omitted)

Also, a Boolean type variable m_bSizeAvailable is added to indicate if the original
positions and sizes of the controls have been recorded.

There is no OnInitDialog() member function for class CFormView. The similar one
is CView:: OnInitialUpdate(). This function is called when the view is first created
and is about to be displayed. We can record the positions and sizes of the
controls in this function.

Variable m_bSizeAvailable is initialized to FALSE in the constructor of class
CDBView:

CDBView::CDBView()

: CFormView(CDBView::IDD)

{

//{{AFX_DATA_INIT(CDBView)

//}}AFX_DATA_INIT

m_bSizeAvailable=FALSE;

}

Member function OnInitialUpdate() can be added to class CDBView through using
Class Wizard. In the sample, this function is implemented as follows:

(Code omitted)

Here we call function CWnd::GetWindowRect(...) and CWnd::ScreenToClient(...)
several times to retrieve the sizes and positions of all the controls in the dialog
template.

The handler of message WM_SIZE can also be added through using Class
Wizard. The following is the implementation of this member function in the
sample:

(Code omitted)

The new horizontal and vertical sizes of the client window (CDBView) is passed
through parameters cx and cy. First we create a rectangle whose dimension is
equal to the dimension of the dialog template. Then we compare its horizontal
size to cx, and vertical size to cy. If cx is greater than the template's horizontal
size, we move button A and button B in the horizontal direction, increase the
horizontal size of edit box and static group control. If cx is not greater than the
template's horizontal size, we put button A and button B to their original
positions, set the horizontal sizes of edit box and static group control to their
initial horizontal sizes (this is why we need to know each control's initial size and
position). The same thing is done for vertical sizes. Finally, function
CWnd::MoveWindow(...) is called to carry out the resize and reposition.

With the above implementation, the form view will have a well balanced
appearance all the time.

6.7 Tool Tips

Tool Tip Implementation

Tool tip is a very nice feature, it gives the user quick hint on the functionality of
a control. In MFC, tool bar is implemented with automatic tool tip feature: if we
add a string whose ID is the same with a control's ID, that string will be used to
implement the tool tip for that control. For dialog box, we also want the tool tip
to be implemented in a similar way.

In a dialog box, all the controls (except static ones) can be enabled to display
tool tips. The procedure of enabling tool tips is very simple: first call function
CWnd::EnableToolTips(...) in the dialog box's initialization stage, then handle
message TTN_NEEDTEXT. This message is sent to obtain a tool tip text for a
specific control. The message handler has the following format:

OnToolTipNotify(UINT id, NMHDR *pNMHDR, LRESULT *pResult);

{

TOOLTIPTEXT *pTTT = (TOOLTIPTEXT *)pNMHDR;

UINT nID =pNMHDR->idFrom;

......

}

Here the first parameter id indicates the window that sent this notification, which
is useless to us. The second parameter is a NMHDR type pointer, which must be
cast to TOOLTIPTEXT type in order to process a tool tip notification. Structure
TOOLTIPTEXT has the following format:

typedef struct {

NMHDR hdr;

LPTSTR lpszText;

WCHAR szText[80];

HINSTANCE hinst;

UINT uflags;

} TOOLTIPTEXT, FAR *LPTOOLTIPTEXT;

The ID of the target control (whose tool tip text is being retrieved) can be
obtained from member hdr. From this ID we can obtain the resource string that
is prepared for the tool tip. There are three ways to provide a tool tip string: 1)
Prepare our own buffer that contains the tool tip text and assign the buffer's
address to member lpszText. 2) Copy the tool tip text directly to member szText.
3) Stores the tool tip text in a string resource, assign its ID to member lpszText.
In the last case, we need to assign member hinst the instance handle of the
application, which can be obtained from function AfxGetResourceHandle().
Member uflsgs indicates if the control is a window or not.

Recall when we create tool bars and dialog bars in the first chapter, tool tips
were all implemented in a very simple way: we provide a string resource whose
ID is exactly the same with the control ID, and everything else will be handled
automatically. When handling message TOOLTIPTEXT for dialog box, we can also
let the tool tip be implemented in a similar way. In order to do this, we can
assign the resource ID of the control to member lpszText and the application
instance handle to member hinst. If there exists a string resource whose ID is
the same with the control ID, that string will be used to implement the tool tip.
Otherwise, nothing will be displayed because the string can not be found.

Sample

Sample 6.7\DB demonstrates how to implement tool tips for the controls
contained in a dialog box. It is based on sample 6.6\DB, with tool tips enabled
for the following three controls: ID_EDIT, ID_BUTTON_A and ID_BUTTON_B
(Although sample 6.6\DB is a form view based application, the tool tip
implementation is the same with that of a dialog box).

Three string resources are added to the application, whose IDs are IDC_EDIT,
IDC_BUTTON_A and IDC_BUTTON_B. They will be used to implement tool tips
for the corresponding edit box and buttons. In function
CDBView::OnInitialUpdate(), the tool tips are enabled as follows

void CDBView::OnInitialUpdate()

{

......

EnableToolTips(TRUE);

}

Message handler of TTN_NEEDTEXT must be added manually. First we need to

declare a member function OnToolTipNotify() in class CDBView:

(Code omitted)

Then, message mapping macros should be added to the implementation file:

BEGIN_MESSAGE_MAP(CDBView, CFormView)

......

ON_NOTIFY_EX(TTN_NEEDTEXT, 0, OnToolTipNotify)

END_MESSAGE_MAP()

Here, TTN_NEEDTEXT is sent through message WM_NOTIFY. Macro
ON_NOTIFY_EX allows more than one object to process the specified message. If
we use this macro, our message handler must return TRUE if the message is
processed. If we do not process the message, we must return FALSE so that
other objects can continue to process this message. Please note that in the
above message mapping, the second parameter should always be 0.

Member function CDBView::OnToolTipNotify(...) is implemented as follows:

(Code omitted)

First the ID of the control is obtained. If the control is a window, this ID will be a
valid handle. We can retrieve the control's resource ID by calling fucntion
::GetDlgCtrlID(...). Next, the resource ID is assigned to member lpszText, and
the application's instance handle is assigned to member hinst.

With this method, we can only implement a tool tip which contains maximum of
80 characters. To implement longer tool tips, we need to provide our own buffer
and assign its address to member lpszText. In this case, we do not need to
assign the application's instance handle to member hinst.

After adding the above implementation, we can just add string resources whose
IDs are the same with the resource IDs of the controls. By doing this, the tool tip
will automatically implemented for them.

6.8 Tool Bar and Status Bar in Dialog Box

By default, the dialog box does not support tool bar and status bar
implementation. Because a dialog box can contain various intuitive controls, it is
often not necessary to implement extra tool bar and status bar. But sometimes

the tool bar and status bar are helpful, especially when we want to implement a
row of buttons with the same size. In this case, we can also easily implement the
tool tips and flybys on the status bar.

Frame Window

In a standard SDI or MDI application, tool bar and status bar can be
implemented by declaring CToolBar and CStatusBar type variables in class
CMainFrame (They will be created in function CMainFrame::OnCreate(...)). In a
dialog-based application, the frame window is the dialog box itself, so we need to
embed CToolBar and CStatusBar type variables in the CDialog derived class and
create them in function CDialog::OnInitDialog().

However, unlike CFrameWnd, class CDialog is not specially designed to work
together with status bar and tool bar, so it lacks some features that are owned
by class CFrameWnd: first, it does not support automatic tool tip
implementation, so we have to write TTN_NEEDTEXT message handler for
displaying tool tips; second, it does not support flyby implementation, so we also
need to add other message handlers in order to enable flybys.

Flyby Related Messages

In MFC, there are two un-documented messages that are used for flyby
implementation. When a flyby text for certain control needs to be displayed, the
frame window will receive message WM_SETMESSAGESTRING. Also, when a
flyby needs to be removed, the frame window will receive another message:
WM_POPMESSAGESTRING.

Tool Bar Resource

Sample 6.8-1\DB demonstrates how to implement tool bar and status bar in a
dialog based application. The sample is generated by Application Wizard, with a
tool bar resource IDD_DB_DIALOG added later on. This ID is the same with the
dialog template ID, which is convenient for tool bar implementation.

The tool bar contains four buttons, whose IDs are ID_BUTTON_YELLOW,
ID_BUTTON_GREEN, ID_BUTTON_RED and ID_BUTTON_BLUE, and they are
painted with yellow, green, red and blue colors respectively. Four string
resources are also added to the application, they will be used to implement tool
tips and flybys:

(Table omitted)

The sub-string before character '\n' will be used to implement flyby, and the sub-
string after that will be used to implement tool tip. We will see that by letting the

control and the string resource share a same ID, it is easier for us to implement
both flybys and tool tips.

New CToolBar and CStatusBar type variables are declared in class CDBDlg:

class CDBDlg : public CDialog

{

......

protected:

......

CStatusBar m_wndStatusBar;

CToolBar m_wndToolBar;

......

};

Status Bar

A status bar is divided into several panes, each pane displays a different type of
information. We can create as many panes as we like. When implementing a
status bar, we must provide each pane with an ID. We can use these IDs to
access each individual pane, and output text or graphic objects. Usually these
IDs are stored in a global integer array. In the sample, the following array is
declared for the status bar:

static UINT indicators[] =

{

AFX_IDS_IDLEMESSAGE,

IDS_MESSAGE

};

The status bar will have only two panes. Usually the first pane of the status bar
is used to display flybys (In the idle state, "Ready" will be displayed in it). One

property of status bar is that if we implement a string resource whose ID is the
same with the ID of a pane contained in a status bar, the string will be
automatically displayed in it when the application is idle. So here we can add two
string resources whose IDs are AFX_IDS_IDLEMESSAGE and IDS_MESSAGE
respectively. Since Developer Studio does not allow us to add a string resource
starting with "AFX_", we may copy this string resource from any standard SDI
application (An SDI application has string resource AFX_IDS_IDLEMESSAGE if it
is generated by Application Wizard).

Adding Control Bars to Dialog Box

In function CDBDlg::OnInitDialog(), the following code is added for creating both
tool bar and status bar:

(Code omitted)

Here, the procedure of creating the tool bar and status bar is almost the same
with what we need to do for a standard SDI and MDI application in function
CMainFrame::OnCreate(). The difference is that when implementing them in a
dialog box, there is no need to set docking/floating properties for the control
bars.

Function CWnd::RepositionBars(...) is also called to calculate the position of
control bars then and reposition them according to the dimension of the client
area. If we do not call this function, the status bar and tool bar may be randomly
placed and thus can not be seen. When calling this function, we can use
AFX_IDW_CNTROLBAR_FIRST and AFX_IDW_CONTROLBAR_LAST instead of
providing actual IDs of the control bars.

Resizing the Client Area to Accommodate Control Bars

By compiling the and executing the application at this point, we will see that the
dialog box is implemented with a tool bar and a status bar. The problem is: they
occupy the client area without resizing the dialog box. If a control happens to be
placed to the top or the bottom of the dialog template, it might overlap one of
the control bars.

To solve this problem, we need to resize the dialog box and move the common
controls to leave room for both tool bar and status bar.

Function CWnd::RepositionBars(...) has the following format:

void CWnd::RepositionBars

(

UINT nIDFirst, UINT nIDLast, UINT nIDLeftOver, UINT
nFlag=CWnd::reposDefault,

LPRECT lpRectParam=NULL, LPCRECT lpRectClient=NULL

);

The function has six parameters, among them, nFlag, lprectParam and
lpRectClient all have default values. When we called this function in the previous
step, all the default values were used. This will pass CWnd::reposDefault to
parameter nFlag, which will cause the default layout to be performed. If we pass
CWnd::reposQuery to parameter nFlag, we can prepare a CRect type object and
pass its address to lpRectParam to receive the new client area dimension (The
client area is calculated with the consideration of control bars, their sizes are
deducted from the original dimension of the client area). This operation will not
let the layout be actually carried out. Based on the retrieved size, we can adjust
the size of the dialog box and move the controls so that we can leave enough
room to accommodate the tool bar and the status bar.

The following is the updated implementation of function CDBDlg::OnInitDialog():

(Code omitted)

First function CWnd::GetClientRect() is called and the dimension of client window
is stored in rectOld. After the control bars are created, we call function
CWnd::RepositionBars(...) and use flag CWnd::reposQuery to obtain the new
layout dimension with the consideration of two control bars. The new layout
dimension is stored in variable rectNew. The offset is calculated by deducting
rectOld from rectNew. To access all the controls in the dialog box, we first call
CWnd::GetWindow(...) using GW_CHILD flag to obtain the first child window of
the dialog box, then call CWnd::GetNextWindow() repeatedly to find all the other
child windows. Each child window is moved according to the offset dimension.
Finally the dialog box is resized by calling function CWnd::RepositionBars(...)
using the default parameters.

Tool Tip and Flyby Implementation

We need to add message handler for TTN_NEEDTEXT notification in order to
implement tool tips. Also, we need to handle WM_SETMESSAGESTRING and
WM_POPMESSAGESTRING in order to implement flybys on the status bar.

In the sample, three new message handlers are added to class CDBDlg:

(Code omitted)

Function CDBDlg::OnTooltipText(...) will be used to handle TTN_NEEDTEXT
message, CDBDlg:: OnSetMessageString(...) and
CDBDlg::OnPopMessageString(...) will be used to handle
WM_SETMESSAGESTRING and WM_POPMESSAGESTRING respectively.

Message mapping macros are added to the implementation file as follows:

(Code omitted)

First the target window handle is obtained from idFrom member of structure
NMHDR, and the ID of the button is retrieved by calling function
::GetDlgCtrlID(...). Then a string with the same ID is loaded from the resource
into a CString type variable, and the sub-string after the '\n' character is copied
into szText member of structure TOOLTIPTEXT. The sub-string before this
character will be used to implement flyby.

The rest two functions are implemented as follows:

(Code omitted)

The control ID is sent through WPAMAM parameter of the message, so in the
first function, we just use this ID to load a string from the resource, and display
it in the first pane of the status bar by calling function
CStatusBar::SetPaneText(...). For the second function, if there is no pop up
message, we just return 0. Otherwise we call the first function to display an
appropriate message.

Implementing Control Bars for Dialog Boxes Implemented in SDI or MDI
Applications

We may think that by using the form view, it would be much easier for us to add
tool bar and status bar to dialog box. So what's the meaning to implement them
by ourselves? First a form view based application is implemented with
document/view structure, and a pure dialog based application has fewer classes
(only CWinApp and CDialog). Second, if we have a dialog box implemented in an
SDI or MDI application, it is difficult for us to implement it as a form view.

Sample 6.8-2\DB demonstrates how to implement control bars for a dialog box
contained in an SDI or MDI application. It is a standard SDI application
generated by Application Wizard. First a dialog template IDD_DIALOG is added
to the application, and a new CDialog based class CBarDialog is created through
using Class Wizard. Like what we did in sample 6.8-1\DB, variables
m_wndStatusBar and m_wndToolBar are declared in class CBarDialog, function
CBarDialog::OnInitDialog() is modified to create the status bar and tool bar, and

three message handlers are implemented for TTN_NEEDTEXT,
WM_SETMESSAGESTRING and WM_POPMESSAGESTRING.

A new command Dialog | Bar Dialog is added to mainframe menu
IDR_MAINFRM, whose command ID is ID_DIALOG_BARDIALOG. Its
WM_COMMAND message handler can be added through using Class Wizard, in
the sample, this handler is CDBDoc::OnDialogBardialog().

Function CDBDoc::OnDialogBardialog() can be implemented as follows:

void CDBDoc::OnDialogBardialog()

{

CBarDialog dlg;

dlg.DoModal();

}

If we do this, the tool bar and the status bar will be added to the dialog box.
Also, the tool tips will work. However, there will be no flyby displayed in the
status bar.

Problem

The reason for this is that when the application tries to display a flyby on the
status bar, it will always try to put it on the status bar of the top-most parent
window, which is the mainframe window in an SDI or MDI application. If the top-
most window is inactive, the flyby will not be displayed.

When we invoke a modal dialog box, the mainframe window will always be
inactivated. This is the reason why the flyby will be displayed neither on the
status bar of the dialog box nor on the status bar of the mainframe window.

Work Around

One fix to this problem is to override the member function that is used to display
the flyby. If we study the source code of class CControlBar, we will find that the
flyby display is implemented as follows: after the mouse cursor enters the tool
bar, a timer with time out period of 300 millisecond will be started. When this
timer times out, the application checks to see if the cursor is still within the tool
bar. If so, it kills the timer, starts another timer with a time out period of 200
millisecond. Next, it finds out the ID of the control that is under the mouse

cursor and sends WM_SETMESSAGESTRING message to the mainframe window
(if it is active).

The time out event is handled by function CControlBar::OnTimer(), we can
override it and send WM_SETMESSAGESTRING message to the dialog box
window.

The following is the original implementation of function CControlBar::OnTimer():

(Code omitted)

Note that in the above code fragment, function CWnd::GetTopLevelParent() is
used to obtain the window where flyby should be displayed. If we replace it with
CWnd::GetParent(), everything will be fixed.

Overriding CToolBar::OnTimer(...)

In the sample a new class CDlgToolBar is added to the application, whose base
class is CToolBar. Within the new class, function OnTimer(...) is declared to
override the default implementation:

(Code omitted)

Function CDlgToolBar::OnTimer(...) is implemented as follows:

(Code omitted)

This is just a copy of function CControlBar::OnTimer(...), except that here
function CWnd:: GetTopLevelParent() is replaced by CWnd::GetParent().

An Alternate Solution

But this is not the best solution. Because the current implementation of function
CControlBar:: OnTimer(...) is not guaranteed to remain unchanged in the future,
there is a possibility that the above implementation will become incompatible
with future versions of MFC.

The best solution is to set our own timer and simulate the default behavior of
control bar. We can bypass all the implementation in the base class and set up
our own 300 millisecond timer when the mouse cursor first enters the tool bar.
When this timer times out, we check if the cursor is still within the tool bar. If so,
we kill the timer and set another 200 millisecond timer. Whenever the timer
times out, we check the position of mouse cursor and send
WM_SETMESSAGESTRING message to the window that contains the tool bar.

Sample 6.8-3\DB demonstrates this method. It is based on sample 6.8-2\DB,
with the WM_TIMER message handler removed from the application.

To detect mouse movement, we need to override function
CWnd::PreTranslateMessage(...). Also, two timer IDs are defined to set timers:

#define ID_TIMER_DLGCHECK 500

#define ID_TIMER_DLGWAIT 501

The above IDs can be any integers. A Boolean type variable m_bTimerOn is
declared in class CDlgToolBar. It will be used to indicate if the timer is currently
enabled or not.

Variable m_bTimerOn is initialized in the constructor:

CDlgToolBar::CDlgToolBar():CToolBar()

{

m_bTimerOn=FALSE;

}

Function CDlgToolDar::PreTranslateMessage(...) is implemented as follows:

(Code omitted)

If the message is WM_MOUSEMOVE and the timer is off, this indicates that the
mouse cursor has just entered the tool bar. We need to set timer
ID_TIMER_DLGWAIT. Also, we need to set flag m_bTimerOn to TRUE.

Function CDlgToolBar::OnTimer(...) is implemented as follows:

(Code omitted)

We call function ::GetCursorPos(...) to retrieve the current mouse cursor
position, then call function CWnd::ScreenToClient(...) to convert it to the tool bar
coordinate system.

Next we call CWnd:: OnToolHitTest(...) to obtain the control ID of the button,
then send WM_SETMESSAGESTRING message to the parent of the control bar.
In case the current timer is ID_TIMER_DLGWAIT, we kill it and set timer
ID_TIMER_DLGCHECK with a time out period of 200 millisecond. If the mouse

cursor is not within the toolbar, this indicates that it has just been moved outside
the control bar. In this case, we need to send message
WM_POPMESSAGESTRING to the parent window, then kill the timer.

With this implementation, the flybys will work as if they were implemented in a
standard control bar.

Summary:

1) To implement modeless dialog box, we need to declare CDialog type member
variable and call CDialog::Create(...) instead of function CDialog::DoModal().

2) When a modeless dialog box is dismissed, the window becomes hidden rather
than being destroyed. So if the user invoke the dialog again, we need to call
function CWnd::ShowWindow(...) to activate the window rather than create it
again.

3) We can decide the visual state of a window by calling function
CWnd::IsWindowVisible(...).

4) Property sheet can be implemented as follows: 1) Derive a class from
CPropertySheet.

5) Add dialog template for each property page. 3) Implement a CPropertyPage
derived class for each dialog template created in step 2). 4) Use the classes
created in step 3) to declare variables in the class derived from CPropertySheet.
5) In the constructor of CPropertySheet derived class, call CPropertySheet::
AddPage(...) for each page.

6) A property sheet can have either standard style or wizard style. To enable
wizard style, we need to call function CPropertySheet::SetWizardMode().

7) To convert a dialog template dimension (measured in dialog box unit) to its
actual screen size (measured in screen pixels), we need to call function
CDialog::MapDialogRect(...).

8) Tracking sizes and maximized size of a window can be set by handling
message WM_GETMINMAXINFO.

9) The background of a window can be customized by handling message
WM_ERASEBKGND.

10) The background of controls contained in a dialog box can be customized by
handling message WM_CTLCOLOR. When handling this message, we can provide
a NULL (hollow) brush to make the background transparent.

11) Tool tips can be added for controls contained in a dialog box by calling
function CWnd::EnableToolTips(...) and handling notification TTN_NEEDTEXT.

12) Tool bar and status bar can also be implemented in a dialog box. We must
move the controls contained in the dialog box to accommodate the control bars.
Also, we need to handle messages TTN_NEEDTEXT, WM_SETMESSAGESTRING
and WM_POPMESSAGESTRING in order to implement tool tips and flybys.

BACK TO INDEX

&nb

Chapter 7 Common Dialog Boxes

Common dialog boxes are very useful in Windows(programming. We can use
these dialog boxes to select files, colors, fonts, set up printer, do search and
replace. Since these kind of operations are very common for all applications,
common dialogs are pre-implemented by the operating system. We do not need
to create them from dialog template if we want to use one of these dialog boxes.

7.1 File Open and Save Dialog Box

Implementing a Standard File Open Dialog Box

File dialog box is designed to let user pick up a file name for open, save, or other
operations. In MFC, this type of common dialog boxes is implemented by class
CFileDialog. The code used to implement a file open dialog box is very simple:
we can just declare a CFileDialog type variable, then call function
CFileDialog::DoModal() to implement the dialog box:

CFileDialog dlg(TRUE);

dlg.DoModal();

That's all we need to do. Since class CFileDialog does not have a default
constructor, we must pass at least a Boolean type value to the first parameter of
its constructor. If this value is TRUE, the dialog box will be an "Open" dialog box,
if it is FALSE, the dialog box will be a "Save As" dialog box. Because the dialog
template is already implemented by the operating system, we don't even need
to design a single button for it. However, with the above simple implementation,
what we can create is a very general file open dialog box: it does not have file
filter, it does not display default file name, also, the initial directory is always the
current working directory.

Structure OPENFILENAME

To customize the default behavior of file dialog box, we need to add extra code.
Fortunately, this class is designed so that its properties can be easily changed by
the programmer. We can make changes to its default file extension filter, default
file name. We can also enable or disable certain controls in the dialog box, or
even use our own dialog template.

Class CFileDialog has a very important member variable: m_ofn. It is declared
by structure OPENFILENAME, which has the following format:

typedef struct tagOFN { // ofn

DWORD lStructSize;

HWND hwndOwner;

HINSTANCE hInstance;

LPCTSTR lpstrFilter;

LPTSTR lpstrCustomFilter;

DWORD nMaxCustFilter;

DWORD nFilterIndex;

LPTSTR lpstrFile;

DWORD nMaxFile;

LPTSTR lpstrFileTitle;

DWORD nMaxFileTitle;

LPCTSTR lpstrInitialDir;

LPCTSTR lpstrTitle;

DWORD Flags;

WORD nFileOffset;

WORD nFileExtension;

LPCTSTR lpstrDefExt;

DWORD lCustData;

LPOFNHOOKPROC lpfnHook;

LPCTSTR lpTemplateName;

} OPENFILENAME;

It has 20 members, which can all be used to customize the dialog box. In this
and the following sections, we are going to see how to use them to change the
default behavior of the file dialog box.

File Extension Filter

One of the most important members in this structure is lpstrFilter, which lets us
specify a user defined filter for displaying files. Only those files whose extensions
match one of the filters will be displayed in the dialog box. We can specify as
many filters as we want. Each filter is made up of two parts: the text description
and the filter string. The text description is used to give the user an idea about
the type of the files, the filter string usually contains wildcard characters that can
be used to specify file types.

For example, if we want to display only bitmap files, the description could be
"Bitmap File (*.bmp)" and the filter string should be "*.bmp". Filters are
separated by zeros. Within a filter, the description text and the filter string are
also separated by a zero. For example, if we want to specify two filters, one is
"*.cpp", another is for "*.htm", we should set the filter like this:

lpstrFilter="CPP File(*.cpp)\0*.cpp\0HTML File(*.htm)\0*.htm\0";

In the above statement, "CPP File(*.cpp)\0*.cpp\0" is the first filter and "HTML
File(*.htm) \0*.htm\0" is the second filter.

A filter can select more than one type of files. If we specify this type of filter, the
different file types should be separated by a ';' character. For example, in the
above example, if we want the first filter to select both "*.cpp" and "*.h" file, its
filter string should be "*.cpp;*.h".

Besides the standard filter, we can also specify a custom filter. In the file dialog
boxes, the custom filter will always be displayed in the first place of the filter list.
To specify a custom filter, we can store the filter string in a buffer, use member
lpstrCustomFilter to store the buffer's address, and use member nMaxCustFilter
to store the buffer's size.

If we have a list of filters, we can use only one of them at any time. Member
nFilterIndex lets us specify which filter will be used as the initial one. Here the
index to the first file filter is 1.

Retrieving File Names

After function CFileDialog::DoModal() is called, we can use
CFileDialog::GetFileName() or CFileDialog::GetPathName() to retrieve the file
name selected by the user. The difference between the two functions is that
CFileDialog::GetFileName() returns full file name (including extension), and
CFileDialog::GetFilePath() returns full path name (file name plus directory
names). There are some other member functions that we can call to retrieve file
extension, file title, etc.

File Open

Sample 7.1\CDB demonstrates how to use file dialog box and how to customize
its standard styles. It is a standard SDI application generated by Application
Wizard. After the application is generated, a new sub- menu File Dialog Box is
added to mainframe menu IDR_MAINFRAME between View and Help. Two new
commands File Dialog Box | File Open and File Dialog Box | File Save are added
to this sub-menu, whose IDs are ID_FILEDIALOGBOX_FILEOPEN and
ID_FILEDIALOGBOX_FILESAVE respectively. Two WM_COMMAND message
handlers are added to class CCDBDoc (the document class) for the new
commands through using Class Wizard, the corresponding function names are
CCDBDoc::OnFiledialogboxFileopen() and CCDBDoc::OnFiledialogboxFilesave()
respectively.

In the sample, command File Dialog Box | File Open is used to invoke a file open
dialog box which has two filters and one custom filter. The message handler is
implemented as follows:

(Code omitted)

Before we call function CFileDialog::DoModal(), the default behavior of file dialog
box is modified. Here, three file filters are specified: the first filter selects "*.c",
"*.cpp", "*.h" and "*.hpp" files; the second filter selects "*.doc" and "*.htm"
files; the third filter selects all files. Since "1" is assigned to member
nFilterIndex, the filter that is used initially would be "*.C;*.CPP;*.H;*.HPP".

A custom filter is also specified, which will select only files with "*.bmp"
extension.

After calling function CFileDialog::DoModal(), if the user has picked up a file and

clicked "OK" button, both file name and path name will be displayed in a
message box.

File Save

When we ask the user to save a file, there are two more things that should be
considered. First, we need to specify a default file name that will be used to save
the data. Second, when the user uses "*.*" file filter, we may need to provide a
default file extension.

We can specify the default file name by using members lpstrFile and nMaxFile of
structure OPENFILENAME. We can store the default file name in a buffer, assign
the buffer's address to member lpstrFile and the buffer's size to member
nMaxFile. With this implementation, when the file save dialog box is invoked, the
default file name will appear in "File Name" edit box. Also, we can use member
lpstrDefExt to specify a default file extension. Please note that the maximum size
of an extension string is 3 (If the string contains more than 3 characters, only
the first three characters will be used).

The following is the WM_COMMAND message handler for command File Dialog
Box | File Save:

(Code omitted)

In the sample, the default file name is set to "TestFile" (stored in buffer szFile).
Also, default file extension is "DIB". All other settings are the same with the file
open dialog box implemented above.

7.2 More Customizations

New Style and Old Style File Dialog Boxes

If we are writing applications for new operating systems such as Window95(, we
can implement the file dialog box in two different styles. The new style, also
called "Explorer-style" uses list control to display file names. The old style, which
is the only available file dialog box in Windows3.1(, uses list box control. Two
type of dialog boxes are shown in Figure 7-1.

(Figure 7-1 omitted)

The Explorer style file dialog box can display long file name, the old style dialog
box will convert all long file names to 8.3 format (8 characters of file name + dot
+ 3 characters of extension). By default, class CFileDialog will implement
Explorer-style file dialog box. If we want to create old style file dialog box, we
must set changes to member Flags of structure OPENFILENAME.

Member Flags is a DWORD type value, which contains many 1-bit flags that can
be set or cleared to change the styles of the file dialog box. By default, its
OFN_EXPLORER bit is set, and this will let the dialog box have Explorer-style. If
we set this bit to 0, the dialog box will be implemented in the old style.

Other Bits of Flags

We can use other bits of Flags to further customize the styles of file dialog box.
The following lists three of them:

(Table omitted)

Dialog Box Title

The default titles of file dialog boxes are "File Open" and "Save As". We can
change these titles by preparing text string in a buffer and assign its address to
lpstrTitle member of structure OPENFILENAME.

Retrieving Multiple Path Names and File Names

If we allow the user to select more than one file, we need to call function
CFileDialog:: GetStartPosition() and CFileDialog::GetNextPathName(...) to
retrieve path name for each selected file. Here, the first function will return a
POSITION type value, which could be used to call the second function. The
returned value of the second function is a CString type value, which contains a
valid file path name. Also, when calling the second function, the POSITION value
will also be updated, which again can be used to get the next selected file path
name. If all the selected files have been enumerated, a NULL value will be stored
in the variable that holds the POSITION value.

However, there is no similar functions for retrieving all file names. To obtain all
the selected file names, we need to access member lpstrFile of structure
OPENFILENAME. After the user has made selections, the selected folder and file
names will be stored in a buffer pointed by member lpstrFile. For Explorer-style
dialog box, folder and file names are separated by '\0' characters; for old style
dialog box, they are separated by SPACE character. In either case, folder name
is always the first item contained in the buffer, which is followed by separator
('\0' or SPACE), file name, separator, and file name.... The position of the first
file name is specified by member nFileOffset.

Sample

Sample 7.2\CDB demonstrates these styles. It is based on sample 7.1\CDB, with
two new commands File Dialog Box | Customized File Open and File Dialog Box |

Customize File Open Old added to the application. The IDs of the two commands
are ID_FILEDIALOGBOX_CUSTOMIZEDFILEOPEN and
ID_FILEDIALOGBOX_CUSTOMIZEFILEOPENOLD respectively. Message handlers
are added for them through using Class Wizard, the corresponding member
functions are CCDBDoc:: OnFiledialogboxCustomizedfileopen() and
CCDBDoc::OnFiledialogboxCustomizefileopenold().

For dialog box invoked by command File Dialog Box | Customized File Open,
multiple file selection is enabled. Also, the dialog box has a "Help" button and a
"Read only" check box. The following is the implementation of this command:

(Code omitted)

Two flags OFN_ALLOWMULTISELECT and OFN_SHOWHELP are set, this will
enable multiple file selection and display the "Help" button. Also, flag
OFN_HIDEREADONLY is disabled, this will display "Read only" check box in the
dialog box. If the dialog box returns value IDOK (This indicates the user has
pressed "OK" button), the first file name is obtained by doing the following:

lpstr=dlg.m_ofn.lpstrFile+dlg.m_ofn.nFileOffset;

Because the file names are separated by '\0' characters, we can use the
following statement to access next file name:

lpstr+=strlen(lpstr);

Path names are obtained through calling function CFileDialog::GetStartPosition()
and CFileDialog::GetNextPathName(...). The selected file and path names will be
displayed in a message box.

Command File Dialog Box | Customize File Open Old has the same functionality,
except that the dialog box is implemented in the old style. Before the dialog box
is invoked, flag OFN_LONGNAMES is disabled, which will convert all long file
names to "8.3 format". Because the file names are separated by SPACE rather
than '\0' characters, the procedure of obtaining file names is a little different:

(Code omitted)

Instead of checking '\0', SPACE characters are checked between file names.
Because SPACE character is not the end of a null-terminated string, we have to
calculate the length for each file name.

If we compile and execute the application at this point, the dialog boxes invoked
by the two newly added commands should let us select multiple files by using
mouse along with CTRL or SHIFT key.

7.3 Selecting Only Directory

Sometimes we want to let the user select directories (folders) rather than files,
for example, an installation application will probably ask the user to select the
target directory where the files can be copied. In this case, we need to provide
an interface for picking up only directories. Although this can be implemented
through designing a new dialog box, it is not the best solution.

Sample 7.3\CDB demonstrates how to implement directory selection dialog box.
It is based on sample 7.2\CDB, with two new commands added to the
application: File Dialog Box | Dir Dialog and File Dialog Box | Dir Dialog Old. The
IDs of the two new commands are ID_FILEDIALOGBOX_DIRDIALOG and
ID_FILEDIALOGBOX_DIRDIALOGOLD, and their message handlers are
CCDBDoc:: OnFiledialogboxDirdialog() and
CCDBDoc::OnFiledialogboxDirdialogold(). The two commands will be used to
implement directory selection dialog box in new and old styles respectively.

New Style

If we are writing code for Windows 95(or Windows NT4.0(, things become very
simple. There are some API shell functions that can be called to implement a
"folder selection" dialog box with just few simple steps. We can call function
::SHBrowseForFolder(...) to implement dialog box that let the user select folder,
and call function ::SHGetPathFromIDList(...) to retrieve the folder that has been
selected by the user.

The following is the prototype of function ::SHBrowseForFolder(...):

WINSHELLAPI LPITEMIDLIST WINAPI ::SHBrowseForFolder(LPBROWSEINFO
lpbi);

It has only one parameter, which is a pointer to structure BROWSEINFO. The
structure lets us set the styles of folder selection dialog box, it has eight
members:

typedef struct _browseinfo {

HWND hwndOwner;

LPCITEMIDLIST pidlRoot;

LPSTR pszDisplayName;

LPCSTR lpszTitle;

UINT ulFlags;

BFFCALLBACK lpfn;

LPARAM lParam;

int iImage;

} BROWSEINFO, *PBROWSEINFO, *LPBROWSEINFO;

Member hwndOwner is the handle of the window that will be the parent of folder
selection dialog box, it can be NULL (In this case, the folder selection dialog box
does not belong to any window). Member pidlRoot specifies which folder will be
treated as "root" folder, if it is NULL, the "desktop" folder is used as the root
folder. We must provide a buffer with size of MAX_PATH and assign its address
to member pszDisplayName for receiving folder name. Member lpszTitle lets us
provide a customized title for folder selection dialog box. Members lpfn, lParam
and iImage let us further customize the behavior of dialog box by specifying a
user-implemented callback function. Generally we can use the default
implementation, in which case these members can be set to NULL. Member
ulFlags lets us set the styles of folder selection dialog box. For example, we can
enable computer and printer selections by setting BIF_BROWSEFORCOMPUTER
and BIF_BROWSEFORPRINTER flags.

Function ::SHBrowseForFolder(...) returns a pointer to ITEMIDLIST type object,
which can be passed to function ::SHGetPathFromIDList(...) to retrieve the
selected folder name:

WINSHELLAPI BOOL WINAPI ::SHGetPathFromIDList(LPCITEMIDLIST pidl, LPSTR
pszPath);

We need to pass the pointer returned by function ::SHBrowserForFolder(...) to
pidl parameter, then provide our own buffer whose address is passed to
parameter pszPath for retrieving directory name.

Because these functions are shell functions, the buffers returned from them can
not be released using normal method. Instead, it should be released by shell's
task allocator.

Shell's task allocator can be obtained by calling function ::SHGetMalloc(...):

HRESULT ::SHGetMalloc(LPMALLOC *ppMalloc);

By calling this function, we can access shell's IMalloc interface (a shell's interface
that is used to allocate, free and manage memory). We need to pass the address
of a pointer to this function, then we can use method IMalloc::Free(...) to
released the buffers allocated by the shell.

The following is the implementation of command File Dialog Box | Dir Dialog:

(Code omitted)

First function ::SHGetMalloc(...) is called to retrieve a pointer to shell's lMalloc
interface, which will be used to release the memory allocated by the shell. Then,
structure BROWSEINFO is filled. Both hwndOwner and pidlRoot are assigned
NULL. By doing this, the dialog will have no parent, and the desktop folder will
be used as its root folder. The title of dialog box is changed to "Select Directory".
For member ulFlags, two bits BIF_RETURNFSANCESTORS and
BIF_RETURNONLYFSDIRS are set to 1. This will allow the user to select only file
system ancestors and file system directories. The returned buffer's address is
stored in pointer pidl, which is passed to function ::SHBrowseForFolder(...) for
retrieving the directory name. The selected directory name is stored in buffer
szBuf, and is displayed in a message box. Finally, memory allocated by the shell
is released by shell's lMalloc interface.

Old Style

If we are writing code for Win32 applications, the above-mentioned method does
not work. We must use the old style file dialog box to implement folder selection.

The default dialog box has two list boxes, one is used for displaying directory
names, the other for displaying file names. One way to implement directory
selection dialog box is to replace the standard dialog template with our own. To
avoid any inconsistency, we must include all the controls contained in the
standard template in the custom dialog template (with the same resource IDs),
hide the controls that we don't want, and override the default class to change its
behavior.

To use a user-designed dialog template, we must: 1) Prepare a custom dialog
template that has all the standard controls. 2) Set OFN_ENABLETEMPLATE bit for
member Flags of structure OPENFILENAME, assign custom dialog template name
to member lpTemplateName (If the dialog has an integer ID, we need to use
MAKEINTRESOURCE macro to convert it to a string ID). 3) Assign the instance
handle of the application to member hInstance, which can be obtained by calling
function AfxGetInstanceHandle().

The standard file dialog box has two list boxes that are used to display files and
directories, two combo boxes to display drives and file types, an edit box to

display file name, a "Read only" check box, several static controls to display
text, and "OK", "Cancel" and "Help" buttons. The following table lists their IDs
and functions:

(Table omitted)

We must design a dialog template that contains exactly the same controls in
order to replace the default template with it. This means that the custom dialog
template must have static controls with IDs of 1088, 1089, 1090..., list boxes
with IDs of 1120 and 1121, combo boxes with IDs of 1136 and 1137, and so on.

Although we can not delete any control, we can resize the dialog template and
change the positions of the controls so that it will fit our use.

To let user select only folders, we need to hide following controls (along with the
static control that contains text "Directories"): stc1, stc2, stc3, edt1, lst1, cmb1.
We can call function CWnd::ShowWindow(...) and pass SW_HIDE to its
parameter in the dialog initialization stage to hide these controls. Figure 7-3
shows the custom dialog template IDD_DIR implemented in the sample.

We must also fill edit box edt1 with a dummy string, because if it is empty or
filled with "*.*", the file dialog box will not close when the user presses "OK"
button.

By default, clicking on "OK" button will not close the dialog box if the currently
highlighted folder is not expanded. In this case, clicking on "OK" button will
expand the folder, and second clicking will close the dialog box. To overcome
this, we need to call function CFileDialog::OnOK() twice when the "OK" button is
clicked, this will close the dialog box under any situation.

We need to override class CFileDialog in order to change its default behavior. In
the sample application, new class MCDialogBox is added by Class Wizard, whose
base class is selected as CDialogBox. Three new member functions are added:
constructor, MCFileDialog::OnOK() and MCFileDialog:: OnInitDialog(). The
following is this new class:

(Code omitted)

Like class CFileDialog, the constructor of MCFileDialog has six parameters. The
first parameter specifies if the dialog box is an "Open File" or a "Save As" dialog
box, the rest parameters specify default file extension, default file name, style
flags, filter, and parent window.

The constructor is implemented as follows:

(Code omitted)

Nothing is done in this function except calling the default constructor of the base
class. Function MCFileDialog::InitDialog() is implemented as follows:

(Code omitted)

The controls that are useless for picking up folder are set hidden, and edt1 edit
box is filled with a dummy string (it can be any string). The initial focus is set to
the list box which will be used to display the directories. After calling function
OnInitDialog() of base class (this will implement default dialog initialization), the
first directory in the list box is highlighted.

The implementation of function MCFileDialog::OnOK() is very simple:

void MCFileDialog::OnOK()

{

CFileDialog::OnOK();

CFileDialog::OnOK();

}

The standard file dialog template can be found in file "Commdlg.dll", which is
usually located under system directory. A copy of this file can be also found
under Chap7\.

In the sample, command File Dialog Box | Dir Dialog Old is implemented as
follows:

(Code omitted)

Flag OFN_EXPLORER must be disabled in order to implement old style file dialog
box. The name of custom dialog template is assigned to member
lpTemplateName of structure OPENFILENAME. After calling function
MCFileDialog::DoModal(), the directory name is retrieved from member lpstrFile
of structure OPENFILENAME.

Since member nFileOffset specifies position where file name starts, the
characters before this address is the directory name followed by a SPACE
character. We can change SPACE to '\0' character to let the string ends by the
directory name.

This method is only available for the current version of Windows(, it may change
in the future. Whenever possible, we should use the first method to implement
folder selection.

7.4 Adding File Preview

The file dialog box will become more useful if we add a file preview window to it.
With this feature, when the user highlights a file, part of file's contents will be
displayed in the preview window so the user will have a better knowledge on the
file before opening it. This can be easily implemented in the Explorer-style file
dialog box because it provides an easy way to let us add extra controls to the
default dialog box and write message handlers.

Adding Extra Controls

Explorer-style file dialog box has a nice feature that lets us add extra controls.
We can design our own dialog template, and add other common controls.
Instead of copying all the default controls contained in the standard dialog box,
we can just create a static text control with symbolic ID of stc32. The relative
positions between our controls and stc32 will be used to decide the layout of the
file dialog box. When using this dialog template, we need to set
OFN_ENABLETEMPLATE bit for member Flags of structure OPENFILENAME, and
assign the name of custom dialog template to member lpTemplateName. Also,
we need to derive a new class from CFileDialog in order to handle messages for
the newly added controls.

Notification CDN_SELCHANGE

File selection activities are sent to the dialog box through WM_NOTIFY message.
This message is primarily used by common controls to send notifications to the
parent window. For example, in a file dialog box, if the user has changed the file
selection, a CDN_SELCHANGE notification will be sent. Since message
WM_NOTIFY is used for many purposes, after receiving it, we need to check
LPARAM parameter and decide if the notification is CDN_SELCHANGE or not. In
CWnd derived classes, WM_NOTIFY message is handled by function
CWnd:OnNotify(...), we can override it to customize the default behavior of the
file dialog box.

The following is the format of function CWnd::OnNotify(...):

BOOL CWnd::OnNotify(WPARAM wParam, LPARAM lParam, LRESULT *pResult);

To decide if this notification is CDN_SELCHANGE or not, first we need to cast
lParam parameter to an OFNOTIFY type pointer. The following is the format of

structure OFNOTIFY:

typedef struct _OFNOTIFY {

NMHDR hdr;

LPOPENFILENAME lpOFN;

LPTSTR pszFile;

} OFNOTIFY, FAR *LPOFNOTIFY;

The first member of OFNOTIFY is an NMHDR structure:

typedef struct tagNMHDR {

HWND hwndFrom;

UINT idFrom;

UINT code;

} NMHDR;

From its member code, we can judge if the current notification is
CDN_SELCHANGE or not.

Sample

Sample 7.4\CDB demonstrates how to add a file preview window to Explorer-
style file dialog box. If the user selects a file with "*.cpp" extension after the file
dialog is activated, the contents of the file will be displayed in the preview
window before it is opened.

In the sample, a new command File Dialog Box | Custom File Dlg is added to the
application, whose command ID is ID_FILEDIALOGBOX_CUSTOMFILEDLG. Also,
a WM_COMMAND message handler is added for this command through using
Class Wizard, whose correspondung member function is CCDBDoc::
OnFiledialogboxCustomfiledlg().

A new dialog template IDD_COMDLG32 is also added, it contains a static text
control stc32, and an edit box control IDC_EDIT (Figure 7-4). This edit box has
"Disabled" and "Multiline" styles. This will implement a read only edit box that
can display multiple lines of text. A new class MCCusFileDialog is derived from

FileDialog.

In this class, function OnNotity(...) is overridden.

The following is the definition of class MCCusFileDialog:

(Code omitted)

Function MCCusFileDialog::OnNotify(...) is implemented as follows:

(Code omitted)

First we check if the notification is CDN_SELCHANGE, if so, we retrieve the path
name and the file extension by calling function CFileDialog::GetPathName() and
CFileDialog::GetFileExt() respectively. If the file extension is "*.cpp", we call
function CFile::Open(...) to open this file. When making this call, we use flag
CFile::modeRead to open it as a read only file. Then function CFile::Read(...) is
called to read the first 255 characters of the file into buffer szBuf. Finally,
function CWnd::SetWindowText(...) is called to display these characters.

Command File Dialog Box | Custom File Dlg is implemented as follows:

(Code omitted)

The file dialog box is implemented using class MCCusFileDialog. To use the
custom dialog template, OFN_ENABLETEMPLATE bit is set for member Flags, and
the name of the custom dialog template is assigned to member lpTemplateName
of structure OPENFILENAME. Function CFileDialog::DoModal() is called as usual.

If we want to modify the size and relative position of the preview window, we
need to override function OnInitDialog(), and call function
CWnd::MoveWindow(...) there to resize the edit box.

7.5 Color Dialog Box

Introduction

A color dialog box lets the user choose one or several colors from a pool of
available colors. In Windows(, a valid color may be formed by combining red,
green and blue colors with different intensities. There are altogether 16,777,216
possible colors in the system.

In MFC, color dialog box is supported by class CColorDialog. To create a color
dialog box, we need to use class CColorDialog to declare a variable, then call

CColorDialog::DoModal() to activate the dialog box.

In the color dialog box, there are four ways to choose a color (Figure 7-5):

(Figure 7-5 omitted)

1) Select a color from those listed as Basic colors.

2) Select a color from those listed as Custom colors.

3) Select a color from "color matrix".

4) Input R, G, B values directly.

The selected color is shown in "Color | Solid" window. When a dialog box is
implemented, there are two things that we can customize: the original selected
color and the custom colors. If we do not change anything, the default selected
color is black (RGB(0, 0, 0)). There are altogether 16 custom colors. By default,
they are all initialized to white (RGB(255, 255, 255)) at the beginning.

Initializing Selected Color and Custom Colors

The default selected color can be set when the constructor of class CColorDialog
is called. The function has the following format:

CColorDialog::CcolorDialog

(

COLORREF clrInit=0, DWORD dwFlags=0, CWnd *pParentWnd=NULL

);

There are three parameters here, the first of which is the default selected color,
the second is the flags that can be used to customize the dialog box, and the
third is a pointer to the parent window.

Class CColorDialog has a member m_cc, which is a CHOOSECOLOR structure:

typedef struct {

DWORD lStructSize;

HWND hwndOwner;

HWND hInstance;

COLORREF rgbResult;

COLORREF* lpCustColors;

DWORD Flags;

LPARAM lCustData;

LPCCHOOKPROC lpfnHook;

LPCTSTR lpTemplateName;

} CHOOSECOLOR;

We can change the custom colors by assigning the address of a COLORREF type
array with size of 16 to member lpCustColors of this structure. The colors in the
array will be used to initialize the custom colors.

After the dialog box is closed, we can call function CColorDialog::GetColor() to
retrieve the selected color.

Also, if we've initialized custom colors, we can obtain the updated values by
accessing member lpCustColors.

Sample

Sample 7.5\CDB demonstrates how to use color dialog box. First a function
ColorDialog(...) is added to class CCDBDoc, which will implement a color dialog
box whose default selected color and custom colors are customized. The
following is its definition:

class CCDBDoc : public CDocument

{

......

public:

void ColorDialog(COLORREF colorInit, DWORD dwFlags=0);

......

}

This function has two parameters, the first one specifies the initially selected
color, and the second one specifies the style flags. We will show how to use
different style flags later, for the time being we just set all bits to 0. The function
is implemented as follows:

(Code omitted)

We first create a color dialog box and use colorInit to initialize the selected color.
Like OPENFILENAME, structure CHOOSECOLOR also has a Flags member that
can be used to set the styles of color dialog box. In the above function new flags
contained in parameter dwFlags are added to the default flags through bit-wise
OR operation. Variable color is a COLORREF type array with a size of 16. We use
a loop to fill each of its elements with a different color and pass the address of
the array to member lpCustColors of structure CHOOSECOLOR. After calling
CColorDialog::DoModal(), function CColorDialog::GetColor() is called to retrieve
the selected color, whose RGB values are displayed in a message box. Besides
this, the RGB values of custom colors are also displayed.

In the sample, a new sub-menu Color Dialog Box is added to IDR_MAINFRAME
menu, and a command Color Dialog Box | Initialize is created. The ID of this
command is ID_COLORDIALOGBOX_INITIALIZE, also, a WM_COMMAND
message handler CCDBDoc::OnColordialogboxInitialize() is added through using
Class Wizard.

The following is the implementation of this command:

void CCDBDoc::OnColordialogboxInitialize()

{

ColorDialog(RGB(255, 0, 0));

}

The selected color is initialized to red, and no additional styles are specified.

Full Open

Now we are going to customize the styles of color dialog box. First, we can
create a fully opened dialog box by setting CC_FULLOPEN bit for member Flags

of CHOOSECOLOR structure. Also, we can prevent the dialog from being fully
opened by setting CC_PREVENTFULLOPEN bit. In the sample, two menu
commands Color Dialog Box | Disable Full Open and Color Dialog Box | Full Open
are added, in their corresponding message handlers, the color dialog boxes with
different styles are implemented:

void CCDBDoc::OnColordialogboxDisablefullopen()

{

ColorDialog(RGB(0, 255, 0), CC_PREVENTFULLOPEN);

}

void CCDBDoc::OnColordialogboxFullopen()

{

ColorDialog(RGB(0, 255, 0), CC_FULLOPEN);

}

Now we can compile the application and try color dialog boxes with different
styles.

7.6 Custom Dialog Box Template

Like file dialog box, we can use our own dialog template to implement color
dialog box. When designing our own dialog template, we must include all the
items contained in the standard color dialog box. We can change the position
and resize some controls, and hide the ones that do not fit our use. To use the
custom dialog template, we need to set CC_ENABLETEMPLATE bit for member
Flags of structure CHOOSECOLOR, and assign the instance handle of the
application to member hInstance. Here the instance handle of the application
can be obtained by calling function AfxGetInstanceHandle(). We also need to
assign the name of the custom dialog template to member lptemplateName.

Custom Dialog Template

Sample 7.6\CDB demonstrates how to implement color dialog box using user-
designed dialog template. It is based on sample 7.5\CDB, with two new
commands Color Dialog Box | Choose Base Color and Color Dialog Box | Choose
Custom Color added to the application. For command Color Dialog Box | Choose
Base Color, a color dialog box that only allows the user to choose color from

base colors is implemented; for command Color Dialog Box | Choose Custom
Color, the user is only allowed to choose color form custom colors. The IDs of
two commands are ID_COLORDIALOGBOX_CHOOSEBASECOLOR and
ID_COLORDIALOGBOX_CHOOSECOSTUMCOLOR, and their WM_COMMAND
message handlers are CCDBDoc::OnColordialogboxChoosebasecolor() and
CCDBDoc:: OnColordialogboxChoosecostumcolor() respectively.

Figure 7-6 shows the controls contained in the standard color dialog box.

(Figure 7-6 omitted)

The following table contains a list of ID values for these controls:

(Table omitted)

The standard dialog template can be copied from file "Commdlg.dll". By default,
all the controls in this template will have a numerical ID. In order to make them
easy to use, we can assign each ID a symbol, this can be done by inputting a
text ID and assigning the control's original ID value to it in "ID" window of the
property sheet that is used for customizing the styles of a control. For example,
when we open "Text Properties" property sheet for control 720, its "ID" window
shows "720". We can change it to "COLOR_BOX1=720". By doing this, the
control will have an ID symbol "COLOR_BOX1", whose value is 720. In the
sample, most of the controls are assigned ID symbols.

We can hide certain unnecessary controls by calling function
CWnd::ShowWindow(...) in dialog box's initialization stage. However, there is an
easier approach to it: we can resize the dialog template and move the unwanted
controls outside the template (Figure 7-7). By doing this, these controls will not
be shown in the dialog box, and therefore, can not respond to mouse clicking
events.

However, in Developer Studio, a control is confined within the dialog template
and is not allowed to be moved outside it. A workaround for this is to edit the
resource file directly. Actually, a dialog template is based on a text format
resource file. In our sample, all type of resources are stored in file "CDB.rc". By
opening it in "Text" mode, we can find the session describing the color dialog
template:

(Code omitted)

The first four lines specify the properties of this dialog template, which include
its dimension, styles, caption, and font. Between "BEGIN" and "END" keywords,
all controls included in the template are listed. Each item is defined with a type
description followed by a series of styles. In the above example, the first item is

a static text control (LTEXT), which contains text "Basic Colors" ("&Basic
Colors:"). It has an ID of 65535 (-1), located at (4, 4), and its dimension is
(140, 9).

In the above example, if we change a control's horizontal coordinate to a value
bigger than 150 (Because the dimension of the dialog template is 150(124), it
will be moved outside the template.

In the sample, two such dialog templates are prepared: "CHOOSECOLOR" and
"CHOOSECUSCOLOR". In "CHOOSECOLOR", static text control COLOR_BOX1 is
inside the template, and the area within this control will be used to draw base
colors. For "CHOOSECUSCOLOR", static text control COLOR_CUSTOM1 is inside
the template, the area within this control will be used to draw custom colors
(COLOR_BOX1 and COLOR_CUSTOM1 are used to define an area where the
controls will be created dynamically for displaying colors). In both cases, frame
COLOR_CURRENT is inside the template, which will be used to display the
current selected color.

Commands Implementation

Function CCDBDoc::OnColordialogboxChoosebasecolor() is implemented as
follows:

(Code omitted)

There is nothing special for this function. The only thing we need to pay
attention to is that we must set CC_FULLOPEN flag in order to display currently
selected color. Otherwise control COLOR_CURRENT will not work.

The following is the implementation of function
CCDBDoc::OnColordialogboxChoosecostumcolor():

(Code omitted)

We must provide custom colors. Otherwise they will all be initialized to white.
With a color dialog box whose color matrix window can not be used, the custom
colors provide the only way to let user pick up a color.

7.7 Font Dialog Box

Basics

Font dialog box lets user select a special font with different style combinations:
boldface, italic, strikeout or underline. The font size and color can also be set in
the dialog box.. In MFC, the class that is used to implement font dialog box is

CFontDialog. To create a standard font dialog box, all we need to do is declaring
a CFontDialog type variable and using it to call function CFontDialog::DoModal().
Like classes CFileDialog and CColorDialog, class CFontDialog also contains a
member variable that allows us to customize the default styles of color dialog
box. This variable is m_cf, which is declared by structure CHOOSEFONT:

typedef struct {

DWORD lStructSize;

HWND hwndOwner;

HDC hDC;

LPLOGFONT lpLogFont;

INT iPointSize;

DWORD Flags;

DWORD rgbColors;

LPARAM lCustData;

LPCFHOOKPROC lpfnHook;

LPCTSTR lpTemplateName;

HINSTANCE hInstance;

LPTSTR lpszStyle;

WORD nFontType;

WORD ___MISSING_ALIGNMENT__;

INT nSizeMin;

INT nSizeMax;

} CHOOSEFONT;

There are several things that can be customized here. First, we can change the

default font size range. By default, a valid size for all fonts is ranged from 8 to
72. We can set a narrower range by setting CF_LIMITSIZE bit of member Flags
and assigning lower and higher boundaries to members nSizeMin and nSizeMax
respectively. We can also specify font's initial color by setting CF_EFFECTS bit of
member Flags and assigning a COLORREF value to member rgbColors (the initial
color must be one of the standard colors defined in the font dialog box such as
red, green, cyan, black...).

Structure LOGFONT

Also, we can specify an initially selected font (with specified size and styles) by
assigning a LOGFONT type pointer to member lpLogFont. Here, structure
LOGFONT is used to describe a font:

typedef struct tagLOGFONT {

LONG lfHeight;

LONG lfWidth;

LONG lfEscapement;

LONG lfOrientation;

LONG lfWeight;

BYTE lfItalic;

BYTE lfUnderline;

BYTE lfStrikeOut;

BYTE lfCharSet;

BYTE lfOutPrecision;

BYTE lfClipPrecision;

BYTE lfQuality;

BYTE lfPitchAndFamily;

CHAR lfFaceName[LF_FACESIZE];

} LOGFONT;

A font has many properties. The most important ones are face name, height,
and font styles (italic, bolded, underlined or strikeout). In structure LOGFONT,
these styles are represented by the following members: lfFaceName, lfWeight,
lfItalic, lfUnderline and lfStrikeOut. A face name is the name of the font, it
distinguishes one font from another. Every font has its own face name, such as
"Arial", "System" and "MS Serif". The weight of a font specifies how font is
emphasized, its range is from 0 to 1000. Usually we use predefined values such
as FW_BOLD (font is bolded) and FW_NORMAL (font is not bolded) for
convenience. Member lfItalic, lfUnderline and lfStrikeOut are all Boolean type, by
setting them to TRUE, we can let the font to become italic, underlined, or
strikeout. Member nSizeMin and nSizeMax can be used to restrict the size of a
font.

In order to use LOGFONT object to initialize a font dialog box, we must first set
CF_INITTOLOGFONTSTRUCT bit for member Flags of structure CHOOSEFONT,
then assign the LOGFONT type pointer to member lpLogFont.

Retrieving Selected Font

After the font dialog box is closed, the font that is selected by the user can be
retrieved through following member functions: CFontDialog::GetFaceName(),
CFontDialog::IsBold(), CFongDialog:: IsItalic()....

Sample

Sample 7.7\CDB demonstrates how to use font dialog box. It is based on sample
7.6\CDB with a new command Font Dialog Box | Initialize added to the
application. The ID of this command is ID_FONTDIALOGBOX_INITIALIZE, and its
WM_COMMAND message handler is CCDBDoc:: OnFontdialogboxInitialize(). The
command is implement as follows:

(Code omitted)

The initially selected font is "Times New Roman", whose color is yellow
(RGB(255, 255, 0)), and has the following styles: italic, underlined, strikeout,
bolded. The range of the font size is restricted between 20 and 48. After the user
clicks button "OK", the properties of the selected font are retrieved through
member functions of class CFontDialog, and are displayed in a message box.

7.8 Customizing Dialog Box Template

Like file and color dialog boxes, we can use custom dialog template to implement
font dialog box. This gives us a chance to move, resize or hide some standard

controls. To use a custom template, we need the following steps: 1) Design a
new dialog template that contains all the controls in a standard font dialog box.
2) Set CF_ENABLETEMPLATE bit for member Flags of structure CHOOSEFONT,
and assign custom template name to member lpTemplateName. 3) Assign
application's instance handle to member hInstance.

The standard dialog template can be found in file "Commdlg.dll". It can be
opened from Developer Studio in "Resources" mode.

All IDs of the controls are numbers. When writing code to access the controls,
we can use these numbers directly, or we can assign each control a text ID like
what we did for sample 7.6\CDB. Actually, these IDs are all pre-defined, whose
symbolic IDs can be found in file "Dlgs.h" (we can find this file under
~DevStudio\VC\Include\ directory). We can check a control's ID value and
search through this file to find out its symbolic ID. For example, in font dialog
box, the combo box under window "Font:" has an ID of 1136 (0x470). In file
"Dlgs.h", we can find:

......

//

// Combo boxes.

//

#define cmb1 0x0470

#define cmb2 0x0471

#define cmb3 0x0472

......

Value 0x0470 is used by cmb1, so we can access this combo box through using
symbol cmb1.

Sample 7.8\CDB demonstrates how to use custom dialog template to implement
font dialog box. It is based on sample 7.7\CDB. In the sample, a new command
Font Dialog Box | Customize is added to the application, whose command ID is
ID_FONTDIALOGBOX_INITIALIZE. If we execute this command, a font dialog
box whose color selection feature is disabled will be invoked.

In order to implement this dialog box, we need to disable the following two

controls: stc4 (Static control containing string "Color", whose ID value is 1091)
and cmb4 (Combo box for color selection, whose ID value is 1139).

In the sample, the custom dialog template is IDD_FONT. It contains all the
standard controls.

A new class MCFontClass is added to the application through using Class Wizard,
its base class is CFontClass. In the derived class, function OnInitDialog is
overridden, within which the above two controls are disabled:

(Code omitted)

The WM_COMMAND type message handler of command
ID_FONTDIALOGBOX_INITIALIZE is CCDBDoc:: OnFontdialogboxCustomize(),
which is also added through using Class Wizard. The following is its
implementation:

(Code omitted)

With the above implementation, the font dialog box will not contain color
selection feature.

7.9 Modeless Common Dialog Boxes

Tricks

It is difficult to implement modeless common dialog boxes. This is because all
the common dialog boxes are designed to work in the modal style. Therefore, if
we call function Create(...) instead of DoModal(), although the dialog box will
pop up, it will not behave like a common dialog box. This is because function
Create(...) is not overridden in a class such as CColorDialog, CFontDialog.

We need to play some tricks in order to implement modeless common dialog
boxes. By looking at the source code of MFC, we can find that within function
CColorDialog::DoModal() or CFontDialog:: DoModal(), the base class version of
DoModal() is not called. Instead, API functions ::ChooseColor(...)and
::ChooseFont(...) are used to implement common dialog boxes.

There is no difference between the common dialog boxes implemented by API
functions and MFC classes. Actually, using API function is fairly simple. For
example, if we want to implement a color dialog box, we can first prepare a
CHOOSECOLOR object, then use it to call function ::ChooseColor(...). But here
we must initialize every member of CHOOSECOLOR in order to let the dialog box
have appropriate styles.

By using this method we can still create only modal common dialog boxes. A
"modeless" common dialog box can be implemented by using the following
method:

1) Before creating the common dialog box, first implement a non-visible
modeless window.

2) Create the modal common dialog box, use the modeless window as its parent.

Although the common dialog box is modal, its parent window is modeless. So
actually we can switch away from the common dialog box (and its parent
window) without closing it. Because the common dialog box's parent is invisible,
this gives the user an impression that the common dialog box is modeless.

But if we call function DoModal() to implement the common dialog box, we are
not allowed to switch away even it has a modeless parent window. We must call
API functions to create this type of common dialog boxes.

Hook Function

We can provide hook function when implementing common dialog boxes using
API functions. In Windows(programming, a hook function is used to intercept
messages sent to a window, thus by handling these messages we can customize
a window's behavior. Both structure CHOOSEFONT and CHOOSECOLOR have a
member lpfnHook that can be used to store a hook function's address when the
common dialog box is being implemented. If a valid hook function is provided,
when a message is sent to the dialog box, the hook function will be called first to
process the message. To enable hook function, we also need to set
CF_ENABLEHOOK or CC_ENABLEHOOK bit for member Flags of structure
CHOOSEFONT or CHOOSECOLOR. If the message is not processed in the hook
function, the dialog's default behavior will not change.

A hook procedure usually looks like the following:

(Code omitted)

The first parameter is the handle of the destination window where the message
is being sent. The second parameter specifies the type of message. The third
and fourth parameters are WPARAM and LPARAM parameters of the message
respectively. For different events, the messages sent to this procedure are
different. For example, in the dialog's initialization stage, message
WM_INITDIALOG will be sent, if we want to add other initialization code, we
could implement it under "case WM_INITDIALOG" statement.

In MFC, this procedure is encapsulated by message mapping. We don't have to

write hook procedure, because we can map any message to a specific member
function. For example, in MFC, message WM_INITDIALOG is always mapped to
function OnInitDialog(), so we can always do our initialization work within this
member function.

When we use MFC classes to implement common dialog boxes, there is a hook
function _AfxCommDlgProc(...) behind us. We never need to know its existence.
However, we use it indirectly whenever a common dialog box is created. By
looking at MFC source code, we will find that in the constructors of common
dialog boxes, the address of this function is assigned to member lpfnHook.

To make full use of MFC resource, instead of creating a new hook function, we
can use _AfxCommDlgProc(...) when calling API functions to implement common
dialog boxes.

Using MFC Classes together with API Functions

When we use MFC class to create a window, the window's handle is
automatically saved in a member variable. So we can always use the member
functions to access this window. If we use API functions, no MFC class declared
variables can participate in window creating activities, so we will not have any
variable that can be used to call the member functions of MFC classes for
accessing the window. This doesn't mean we are going to give up MFC
implementation completely. Whenever possible, we want to use the member
functions of CColorDialog or CFileDialog instead of implementing everything by
our own. Actually, a window and a MFC class declared variable can be associated
together after the window is created by calling function CWnd::Attach(...). The
following is the format of this function:

BOOL CWnd::Attach(HWND hWndNew);

So long as we have a valid window handle, we can attach it to a MFC class
declared variable.

Obtaining Handle

When we call function ::ChooseColor(...) or ::Choosefont(...), no window handle
will be returned. The only place we can obtain dialog's handle is in the hook
function (through parameter hdlg). We can attach this handle to a CColorDialog
or CFontDialog declared variable after receiving message WM_INITDIALOG.

Accessing Member Variable from Static or Global Function

Because a hook function is a callback function, it must be either a static or global
function. Therefore, we can not access the member variable of a class within the

hook function. To let the window handle be attached to a member variable, we
must pass its address to the callback function through a message parameter. By
doing this, after receiving the message, the member variable can be accessed
through a pointer within the callback function.

Both structure CHOOSECOLOR and CHOOSEFONT have a member lCustData,
which allows us to specify a custom data that will be sent to the callback function
along with WM_INITDIALOG message. The custom data will be contained in
LPARAM message parameter. So if we assign the address of a variable declared
by MFC class to member lCustData, we can receive it in the dialog box'
initialization stage and call function CWnd:: Attach(...) to attach the window
handle to this variable.

In other cases we would like to call the default hook procedure. We can store the
address of the default hook procedure in a variable, and call it within the our
hook procedure as follows:

(Code omitted)

The code listed above shows how to trap WM_INITDIALOG message and attach
the window handle to a variable declared outside the hook function. Also, the
default hook procedure is called to let other messages be processed normally.
Here, lpFontfn is a global pointer that stores the address of the hook procedure.

Sample Implementation

Sample 7.9\CDB demonstrates how to implement modeless common dialog
boxes. It is based on sampele 7.8\CDB, with two new commands added to the
application: Color Dialog Box | Modeless and Font Dialog Box | Modeless, both of
which can be used to invoke modeless common dialog boxs. For the former
command, the user can select a color and switch back to the main window to see
the effect without dismissing the dialog box. The IDs of the two commands are
ID_COLORDIALOGBOX_MODELESS and ID_FONTDIALOGBOX_MODELESS, and
their WM_COMMAND message handlers are CCDBDoc::
OnColordialogboxModeless() and CCDBDoc::OnFontdialogboxModeless()
respectively.

A dummy dialog box is added to the application, whose resource ID is
IDD_DIALOG_DUMMY. It will be used as the parent window of the common
dialog boxes. Since this window is always hidden after being invoked, it does not
matter what controls are included in the dialog template. The class that will be
used to implement this dialog box is MCDummyDlg.

Two new variables are declared in class CCDBDoc for implementing modeless
color dialog box:

(Code omitted)

Here, m_pColorDmDlg will be used to create dummy window, and m_pColorDlg
will be used to create color dialog box.

At the beginning of file "CDBDoc. Cpp", a global hook procedure and a pointer
are declared:

UINT CALLBACK ColorHook(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

UINT (CALLBACK *lpColorfn)(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

Function ColorHook is the custom hook procedure, and pointer lpColorfn will be
used to store the address of the default hook procedure.

In function CCDBDoc::OnColordialogboxModeless(), first we need to initialize
m_pColorDlg and m_pColorDmDlg, then create the dummy window:

(Code omitted)

Function CDialog::Create() is called to create a modeless dialog box, and
function CWnd:: ShowWindow(...) (using parameter SW_HIDE) is called to hide
this window.

Before the color dialog box is created, we must make some changes to structure
CHOOSECOLOR:

(Code omitted)

The address of m_pColorDlg is stored as custom data, which will be sent to the
hook function. The dummy window is designated as the parent window of the
color dialog box and its handle is assigned to member hwndOwner of structure
CHOOSECOLOR. A global COLORREF type array rgbColors is declared, which will
be used to initialize the custom colors in the color dialog box. Also, custom
dialog template "CHOOSECUSCOLOR" is used, which will allow the user to
choose color from only custom colors.

The address of default hook procedure (which is contained in member lpfnHook
of structure CHOOSECOLOR after the constructor of class CColorDlg is called) is
stored in global variable lpColorfn, and the new hook procedure address is
assigned to lpfnHook. Finally, API function ::ChooseColor(...) is called to invoke
the color dialog box:

(Code omitted)

In the hook procedure, after receiving message WM_INITDIALOG, we can obtain
the value of m_pColorDlg from LPARAM parameter and attach the color dialog
box's window handle to it:

(Code omitted)

However, there are still some problems left to be solved. Since the dialog box is
modeless now, we can execute command Color Dialog Box | Modeless again
when the dialog box is being used. Also, in the new situation, the user is able to
exit the application without closing the dialog box first.

To avoid the dummy dialog box and the color dialog box from being created
again while they are active, we have to check m_pColorDlg and m_pColorDmDlg
variables. First, if they are NULL, it means the variables have not been
initialized, we need to allocate buffers and create the window. If they are not
NULL, there are two possibilities: 1) The dialog box is currently active. 2) The
dialog box is closed. Obviously we don't need to do anything for the first case.
For the second case, we need to reinitialize the two variables and create the
window again. Since the window handle is attached to the variable in the hook
procedure, we need to detach it before releasing the allocated buffers. For the
above reasons, the following is added to the beginning of function
CCDBDoc::OnColordialogboxModeless():

(Code omitted)

We need to destroy the windows by ourselves if the user exits the application
without first closing the color dialog box. We can override a member function
OnCloseDocument(), which will be called when the document is about to be
closed. This function can be easily added through using the Class Wizard. The
following shows how it is implemented in the sample:

(Code omitted)

Again, function CWnd::Detach() is called before the buffers are released.

Applying Selected Color Instantly

To make the sample more practical, another feature is added to it: when the
user picks up a color, the client window of the application will be painted with
that color instantly. To implement this, a new COLORREF type variable
m_colorCur is added to class CDBDoc, which will be used to store the current
color of the client window:

class CCDBDoc : public CDocument

{

protected:

......

COLORREF m_colorCur;

......

}

The color is initialized in the constructor as follows:

CCDBDoc::CCDBDoc()

{

......

m_colorCur=RGB(0, 255, 255);

}

Member function CCDBDoc::SetCurrentColor(...) and
CCDBDoc::GetCurrentColor() are added to let us access variable m_colorCur
outside the document:

class CCDBDoc : public CDocument

{

......

public:

void SetCurrentColor(COLORREF);

COLORREF GetCurrentColor(){return m_colorCur;}

......

}

Function CCDBDoc::GetCurrentColor(...) is implemented as an inline function,
and function CCDBDoc::SetCurrentColor(...) is implemented as follows:

(Code omitted)

Here we check if the new color is the same with the old color, if not, we update
member m_colorCur, and repaint the client window by calling function
CDocument::UpdateAllViews(...).

When initializing the color dialog box, we need to use m_colorCur to set the
initially selected color before the color dialog box is created. The following
change is made for this purpose:

Before change:

void CCDBDoc::OnColordialogboxModeless()

{

......

m_pColorDlg=new CColorDialog();

......

}

After change:

void CCDBDoc::OnColordialogboxModeless()

{

......

m_pColorDlg=new CColorDialog(m_colorCur);

......

}

Function CCDBView::OnDraw(...) is modified to paint the client window with
color CCDBDoc:: m_colorCur:

(Code omitted)

First we find out the size of the client window, then call function
CCDBDoc::GetCurrentColor() to retrieve the current color, and call function
CDC::FillSolidRect() to fill the window with this color.

When the user selects a new color, we need to call function
CCDBDoc::SetCurrentColor(...) to update the current color. In order to do this,
we need to trap message WM_LBUTTONUP in the hook procedure, obtain the
selected color and update variable CCDBDoc::m_colorCur. For this purpose: the
following is added to function ColorHook(...):

(Code omitted)

Since ColorHook(...) is not a member function of class CCDBDoc, we can not
access its member function directly from the hook procedure. So here
AfxGetMainWnd() is called first to obtain the mainframe window, then
CFrameWnd::GetActiveDocument() is called to obtain the active document
attached to it. This method can also be used to access the active document from
other classes.

When calling function CCDBDoc::SetCurrentColor(...), we use IDs COLOR_RED,
COLOR_GREEN and COLOR_BLUE to retrieve the current values contained in the
edit boxes (see Figure 7-6). In a standard color dialog box, these edit boxes will
be shown only when the dialog box is fully opened. Although this is not the case
in the sample, we still can retrieve the contents of them even they can not be
seen. Also, we use CDialog::GetDlgItemInt(...) to convert characters to integers
when retrieving the color values.

In the sample, modeless font dialog is implemented in a similar way.

Summary:

1) Three classes that can be used to implement common file dialog box,
common color dialog box and common font dialog box are CFileDialog,
CColorDialog and CFontDialog respectively. To implement a standard common
dialog box, we need to use the corresponding class to initialize a variable, then
call function DoModal() to invoke the dialog box.

2) We can customize the default behavior of common dialog boxes by modifying
the members of structure OPENFILENAME, CHOOSECOLOR or CHOOSEFONT.

3) File dialog box can be implemented either in an "Explorer" style or an "Old"
style.

4) There are some shell functions that can be called to implement folder
selection dialog box. If we want to implement the old-style interface, we must
use custom dialog template and override class CFileDialog.

5) To use custom dialog template, we need to first design a dialog template that
contains all the standard controls, then set "enable template" flag and assign the
template name to member lpTemplateName.

6) To add extra controls to an "Explorer" style file dialog box, we need to design
a dialog template that contains static control with ID of stc32. We do not need to
replicate all the standard controls.

7) MFC classes do not support modeless common dialog boxes. To implement
this type of dialog boxes, we need to create a modeless parent window for the
common dialog box and hide the parent window all the time. This will give the
user an impression that the common dialog box is modeless. Also, we need to
call API functions instead of MFC member functions to create the common dialog
box.

BACK TO INDEX

Chapter 8 DC, Pen, Brush and
Palette

8.0 Device Context & GDI Objects

Starting from this chapter, we are going to study topics on GDI (Graphics Device
Interface) programming.

Situation

GDI is a standard interface between the programmer and physical devices. It
provides many functions that can be used to output various objects to the
hardware (e.g. a display or a printer). GDI is very important because, as a
programmer, we may want our applications to be compatible with as many
peripherals as possible. For example, almost every application need to write to
display, and many applications also support printer output. The problem here is
that since a program should be able to run on different types of devices (low
resolution displays, high resolution displays with different color depth, etc.), it is
impossible to let the programmer know the details of every device and write
code to support it beforehand.

The solution is to introduce GDI between the hardware and the programmer.
Because it is a standard interface, the programmer doesn't have to have any
knowledge on the hardware in order to operate it. As long as the hardware
supports standard GDI, the application should be able to execute correctly.

Device Context

As a programmer, we do not output directly to hardware such as display or
printer. Instead, we output to an object that will further realize our intention.
This object is called device context (DC), it is a Windows(object that contains
the detailed information about hardware. When we call a standard GDI function,
the DC implements it according to hardware attributes and configuration.

Suppose we want to put a pixel at specific logical coordinates on the display. If

we do not have GDI, we need the following information of the display in order to
implement this simple operation:

1) Video memory configuration. We need this information in order to convert
logical coordinates to physical buffer address.

2) Device type. If the device is a palette device, we need to convert a RGB
combination to an index to the color table and use it to specify a color. If the
device is a non-palette device, we can use the RGB combination directly to
specify a color.

Because the actual devices are different form one type to another, it is
impossible for us to gather enough information to support all the devices in the
world. So instead of handling it by the programmer, GDI functions let us use
logical coordinates and RGB color directly, the conversion will be implemented by
the device driver.

GDI Objects

In Windows(, GDI objects are tools that can be used together with device
context to perform various drawings. They are designed for the convenience of
programmers. The following is a list of some commonly used GDI objects:

(Table omitted)

The above GDI objects, along with device context, are all managed through
handles. We can use the handle of an object to identify or access it. Besides the
handles, every GDI object has a corresponding MFC class. The following is a list
of their handle types and classes:

(Table omitted)

As a programmer, most of the time we need to output to a specific window
rather than the whole screen. A DC can be obtained from any window in the
system, and can be used to call GDI functions. There are many ways to obtain
DC from a window, the following is an incomplete list:

1) Call function CWnd::GetDC(). This function will return a CDC type pointer that
can be used to perform drawing operations within the window.

2) Declare CClientDC type variable and pass a CWnd type pointer to its
constructor. Class CClientDC is designed to perform drawing operations in the
client area of a window.

3) Declare CWndowDC type variable and pass a CWnd type pointer to its

constructor. Class CWindowDC is designed to perform drawing operations in the
whole window (including client area and non-client area).

4) In MFC, certain member functions are designed to update application's
interface (i.e. CView:: OnDraw(...)). These functions will automatically be called
when a window needs to be updated. For this kind of functions, the device
context will be passed through one of function's parameters.

5) If we know all the information, we can create a DC by ourselves.

Using DC with GDI Objects

Before calling any function to perform drawing, we must make sure that an
appropriate GDI object is being selected by the DC. For example, if we want to
draw a red line with a width of 2, we must select a solid red pen whose width is
2. The following steps show how to use DC together with GDI objects:

1) Obtain or create a DC that can be used to perform drawing operations on the
target window.

2) Create or obtain an appropriate GDI (pen, brush, font...) object.

3) Select the GDI object into the DC, use a pointer to store the old GDI object.

4) Perform drawing operations.

5) Select the old GDI object into the DC, this will select the new GDI object out
of the DC.

6) Destroy the GDI object if necessary (If the GDI object was created in step 2
and will not be used by other DCs from now on).

The following sections will discuss how to use specific GDI objects to draw
various kind of graphic objects.

8.1 Line

Creating Pen

Sample 8.1\GDI demonstrates how to create a pen and use it to draw lines. The
sample is a standard SDI application generated from Application Wizard.

To draw a line, we need the following information: starting and ending points,
width of the line, pattern of the line, and color. There are several types of pens

that can be created: solid pen, dotted pen, dashed pen. Besides drawing
patterns, each pen can have a different color and different width. So if we want
to draw two types of lines, we need to create two different pens.

In MFC, pen is supported by class CPen, it has a member function
CPen::CreatePen(...), which can be used to create a pen. This function has
several versions, the following is one of them:

BOOL CPen::CreatePen(int nPenStyle, int nWidth, COLORREF crColor);

Parameter nPenStyle specifies the pen style, it can be any of the following:
PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT, PS_NULL, etc.
The meanings of these styles are self-explanatory. The second parameter nWidth
specifies width of the pen. Please note that if we create pen with a style other
than PS_SOLID, this width can not exceed 1 device unit. Parameter crColor
specifies color of the pen, which can be specified using RGB macro.

In MFC's document/view structure, the data should be stored in CDocument
derived class and the drawing should be carried out in CView derived class (for
SDI or MDI applications). Since CView is derived from CWnd, we can obtain its
DC by either calling function CWnd::GetDC() or declare a CClientDC type
variable using the window's pointer. To select a GDI object into the DC, we need
to call function CDC::SelectObject(...). This function returns a pointer to a GDI
object of the same type that is being selected by the DC. Before we delete the
GDI object, we need to use this pointer to select the old GDI object into the DC
so that the new DC will be selected out of the DC.

We can not delete a GDI object when it is being selected by a DC. If we do so,
the application will become abnormal, and may cause GPF (General protection
fault) error.

Drawing Mode

Besides drawing lines, sample 8.1\GDI also demonstrates how to implement an
interactive environment that lets the user use mouse to draw lines anywhere
within the client window. In the sample, the user can start drawing by clicking
mouse's left button, and dragging the mouse with left button held down,
releasing the button to finish the drawing. When the user is dragging the mouse,
dotted outlines will be drawn temporarily on the window. After the ending point
is decided, the line will be actually drawn (with red color and a width of 1). In
order to implement this, the following messages are handled in the application:
WM_LBUTTONDOWN, WM_MOUSEMOVE and WM_LBUTTONUP.

Before the left mouse button is released, we have to erase the old outline before
drawing a new one in order to give the user an impression that the outline

"moves" with the mouse cursor. The best way to implement this type of
operations is using XOR drawing mode. With this method, we can simply draw
an object twice in order to remove it from the device.

XOR bit-wise operation is very powerful, we can use it to generate many special
drawing effects. Remember when we perform a drawing operation, what actually
happens in the hardware level is that data is filled into the memory. The original
data contained in the memory indicates the original color of pixels on the screen
(if we are dealing with a display device). The new data can be filled with various
modes: it can be directly copied into the memory; it can be first combined with
the data contained in the memory, then the combining result is copied into the
memory. In the latter case, the combination could be bit-wise AND, OR, XOR, or
simply a NOT operation on the original data. So by applying different drawing
modes, the output color doesn't have to be the color of the pen selected by the
DC. It could be either the combination of the two (original color and the pen
color), or it could be the complement of the original color.

If we draw an object twice using XOR operation mode, the output color will be
the original color on the target device. This can be demonstrated by the
following equation:

A^B^B=A^(B^B)=A^0=A

Here A is the original color, and B is the new color. The above equation is valid
because XORing any number with itself results in 0, and XORing a number with 0
does not change this number.

When using a pen, we can select various drawing modes. The following table
lists some modes that can be used for drawing objects with a pen (In the table,
P represents pen color, O represents original color on the target device, B
represents black color, W represents white color, and the following symbols
represent bit-wise NOT, AND, OR and XOR operations respectively: ~, &, |, ^):

(Table omitted)

To set the drawing mode, we need to call function CDC::SetROP2(...), which has
the following format:

int CDC::SetROP2(int nDrawMode);

The function has only one parameter, which specifies the new drawing mode. It
could be any of the modes listed in the above table.

Storing Data

When the user finishes drawing a line, the starting and ending points will be
stored in the document. At this time, instead of drawing the new line directly to
the window, we need to update the client window and let the function
CView::OnDraw(...) be called. In this function, all the lines added previously will
be drawn again, so the client will always become up-to-date.

We must override function CView::OnDraw(...) to implement client window
drawing for an application. This is because the window update may happen at
any time. For example, when the application is restored from the icon state, the
whole portion of the window will be painted again. The system will draw the non-
client area such as caption bar and borders, and it is the application's
responsibility to implement client area drawing, which should be carried out in
function CView::OnDraw(...) In MFC, if the application does not implement this,
the client window will be simply painted with the default color. As a programmer,
it is important for us to remember that when we output something to the
window, it will not be kept there forever. We must redraw the output whenever
the window is being updated.

This forces us to store every line that has been drawn by the user in document,
and redraw all of them when necessary. This is the basic document/view
structure of MFC: storing data in CDocument derived class, and representing it in
function CView::OnDraw(...).

In the sample, the lines are stored in an array declared in the document class
CGDIDoc. Also, some new functions are declared to let the data be accessible
from the view:

(Code omitted)

A CPtrArray type variable m_paLines is declared for storing lines. Class CPtrArray
allows us to add and delete pointer type objects dynamically. This class
encapsulates memory allocation and release, so we do not have to worry about
memory management when adding new elements. Three new public member
functions are also declared, among them CGDIDoc::AddLine(...) can be used to
add a new line to m_paLines, CGDIDoc::GetLine(...) can be used to retrieve a
specified line from m_paLines, and CGDIDoc:: GetNumOfLines() can be used to
retrieve the total number of lines stored in m_paLines. Here lines are stored in
CRect type variables, usually this class is used to store rectangles. In the
sample, the rectangle's upper-left and bottom-right points are used to represent
a line.

Although class CPtrArray can manage the memory allocation and release for
storing pointers, it does not release the memory for the stored objects. So in
class CGDIDoc's destructor, we need to delete all the objects stored in the array
as follows:

(Code omitted)

Here we just delete the first object and remove it from the array repeatedly until
the size of the array becomes 0.

In CView derived class, we can call function CView::GetDocument() to obtain a
pointer to the document and use it to access all the public variables and
functions declared there.

Recording One Line

When the left button is pressed down, we need to trace the mouse's movement
until it is released. During this period, it is possible that mouse may move
outside the client window. To enable receiving mouse message even when it is
outside the client window, we need to call function CWnd::SetCapture() to set
window capture. This will direct all the mouse related messages to the window
that has the capture no matter where the mouse is. After the left button is
released, we need to call API function ::ReleaseCapture() to release the capture.

In class CGDIView, some new variables are declared to record the starting and
ending points of the line and the window's capture state:

(Code omitted)

Variables m_ptStart and m_ptEnd are used to record the starting and ending
points of a line, m_bCapture indicates if the window has the capture. Variable
m_bNeedErase indicates if there is an old outline that needs to be erased. After
the user presses down the left button, the initial mouse position will be stored in
variable m_ptStart. Then as the user moves the mouse with the left button held
down, m_ptEnd will be used to store the updated mouse position. A new line is
defined by both m_ptStart and m_ptEnd. The only situation that we don't need
to erase the old line is when m_ptEnd is first updated (before this, it does not
contain valid data).

Two Boolean type variables are initialized in the constructor of CGDIView:

CGDIView::CGDIView()

{

m_bCapture=TRUE;

m_bNeedErase=FALSE;

}

Message handlers of WM_LBUTTONDOWN, WM_MOUSEMOVE and
WM_LBUTTONUP can all be added through using Class Wizard. In the sample,
these member functions are CGDIView::OnLButtonDown(...), CGDIView::
OnMouseMove(...) and CGDIView::OnLButtonUp(...) respectively.

Function CGDIView::OnLButtonDown(...) is implemented as follows:

(Code omitted)

When the left button is pressed down, we need to store the current mouse
position in m_ptStart. The second parameter of CView::OnLButtonDown(...) is
the current mouse position measured in window's own coordinate system, which
can be stored directly to m_ptStart. After that, we can set window capture and
set flag m_bCapture.

When mouse is moving, we need to check if the left button is being held down.
This can be implemented by examining the first parameter (nFlags) of function
CView::OnMouseMove(...). If its MK_LBUTTON bit is set, the left button is being
held down. We can also check other bits to see if SHIFT, CTRL key or mouse
right button is being held down.

If the left button is being held down, we need to draw the outline using the
dotted pen. If there already exists an old outline, we need to erase it before
putting a new one. To draw a line, we need to first call function
CDC::MoveTo(...) to move the DC's origin to the starting point of the line, then
call CDC::LineTo(...) to complete drawing. We don't need to call
CDC::MoveTo(...) each time when drawing several connected line segments
continuously. After function CDC::LineTo(...) is called, the DC's origin will always
be updated to the end point of that line. The following function shows how the
mouse moving activities are handled in the sample:

(Code omitted)

We declare CClientDC type variable to obtain the device context of the client
window. First function CPen::CreatePen(...) is called to create a dotted pen with
black color. Then this pen is selected into the device context and the old pen is
stored in ptrPenOld. Next, the device context's drawing mode is set to
R2_XORPEN, and the original drawing mode is stored in nMode. If this is the first
time the function is called after the user pressed mouse's left button,
m_bNeedErase flag must be FALSE. In this case we need to set it to TRUE.
Otherwise if m_bNeedErase is TRUE, we need to first draw the old outline (This
will erase the outline). Next the current mouse position is stored in variable
m_ptEnd, and CDC::MoveTo(...), CDC::LineTo(...) are called to draw the new

outline. Finally device context's old drawing mode is resumed. Also, the old pen
is selected back into the DC (which will also select the new pen out of the DC).

For WM_LBUTTONUP message handler, we also need to erase the old line if
necessary. Because the new line is fixed now, we need to add new data to the
document and update the client window. The following function shows how this
message is handled:

(Code omitted)

Here a dotted pen is created again to erase the old line. Then function
CView::GetDocument() is called to obtain a pointer to the document. After the
line information is retrieved from the mouse position, function
CGDIDoc::AddLine(...) is called to add new data to the document. Then flag
m_bNeedErase is cleared, and window capture is released. Finally function
CWnd::Invalidate() is called to update the client window. By default, this action
will cause function CView::OnDraw(...) to be called.

For SDI and MDI applications, function CView::OnDraw(...) will be added to the
project at the beginning by Application Wizard. In order to implement our own
interface, we need to rewrite this member function as follows:

(Code omitted)

In the above function CPen::CreatePen(...) is called to create a red solid pen
whose width is 1 device unit. Since the window DC is passed as a parameter to
this funciton, we do not need to call CWnd::GetDC() or declare CClientDC type
variable to obtain window's device context. After the pen is selected into the DC,
the drawing mode is set to R2_COPYPEN, which will output the pen's color to the
target device. Next function CGDIDoc::GetNumOfLines() is called to retrieve the
total number of lines stored in the document. Then a loop is used to draw every
line in the client window. Finally the DC's original drawing mode is resumed and
the new pen is selected out of it.

8.2 Rectangle and Ellipse

It is easy to implement rectangle drawing after we understand the previous
sample. To draw a rectangle, we need to call function CDC::Rentangle(...) and
pass a CRect type value to it. The rectangle's border will be drawn using current
pen selected by the DC, and its interior will be filled with the currently selected
brush.

We can declare a brush type variable using class CBrush, and create various kind
of brushes by calling any of the following functions:
CBrush::CreateSolidBrush(...), CBrush::CreateHatchBrush(...),

CBrush::CreatePatternBrush(...). In the sample, only solid brush is used. In
Windows(, there are several pre-implemented default GDI objects that can be
retrieved and used at any time. These objects include pens, brushes, fonts, etc.
We can get any object by calling ::GetStockObject(...) API function. The
returned value is a handle that could be attached to a GDI variable (declared by
MFC class) of the same type. For example, the following code shows how to
obtain a gray brush and attach it to a CBrush type variable:

CBrush brush;

brush.Attach(::GetStockObject(GRAY_BRUSH));

//After some drawing

brush.Detach();

We need to detach the object before the GDI variable goes out of scope.

When a rectangle is not finally fixed, we may want to draw only its border and
leave its interior unpainted. To implement this, we can select a NULL (hollow)
brush into the device context. A hollow brush can be obtained by calling function
::GetStockObject(...) using HOLLOW_BTRUSH or NULL_BRUSH flag.

Sample 8.2-1\GDI demonstrates how to implement an interactive environment
to let the user draw rectangles. It is an SDI application generated by Application
Wizard. Like what we implemented in sample 8.1\GDI, first some member
variables and functions are declared in the document for storing rectangles:

(Code omitted)

In the destructor, all the objects in array m_paRects are deleted:

(Code omitted)

In class CGDIView, some new variables are declared, they will be used to record
rectangles, erasing state and window capture state:

(Code omitted)

Two Boolean type variables are initialized in the constructor:

(Code omitted)

Message handlers for WM_LBUTTONDOWN, WM_MOUSEMOVE and

WM_LBUTTONUP are added to class CGDIView through using Class Wizard. They
are implemented as follows:

(Code omitted)

Also, function CGDIView::OnDraw(...) is modified as follows:

(Code omitted)

With the above implementation, the application will be able to let the user draw
rectangles.

With only minor modifications we can let the application draw ellipses. Sample
8.2-2\GDI demonstrates how to implement interactive ellipse drawing. It is
based on sample 8.2-1\GDI.

To draw an ellipse, we need to call function CDC::Ellipse(...)and pass a CRect
type value to it. This is exactly the same with calling function
CDC::Rectangle(...). So in the previous sample, if we change all the "Rectangle"
keywords to "Ellipse", the application will be implemented to draw ellipses
instead of rectangles.

In sample 8.2-2\GDI, function CDC::Ellipse(...) is called within
CGDIView::OnMouseMove(...) and CGDIView::OnDraw(...). The following shows
the modified portion of two functions:

(Code omitted)

In CGDIView::OnDraw(...), function CBrush::CreateSolidBrush(...) is also
changed to CBrush:: CreateHatchBrush(...). By doing this, a different brush will
be used to fill the interior of ellipse.

8.3 Curve

We can call function CDC::PolyBezier(...) to draw curves. This function has two
parameters:

BOOL CDC::PolyBezier(const POINT* lpPoints, int nCount);

The first parameter lpPoints is a pointer to an array of points, which specify the
control points that can be used for drawing a curve. The second parameter
nCount specifies how many control points are included in the array. We need at
least four control points to draw a curve, although the last three points could be
the same (In this case, a straight line will be drawn).

Sample 8.3\GDI demonstrates how to implement an interactive environment
that can let the user draw curves. It is a standard SDI application generated by
Application Wizard. First new variable and functions are declared in the
document, which will be used to store the data of curves:

(Code omitted)

We use a CDWordArray type variable m_dwaPts to record control points, this
class can be used to record DWORD type value, which is 32-bit integer. Because
a point contains two integers, we need two DWORD type variables to store one
point. So in CGDIDoc::AddPoint(...), function CDWordArray::Add(...) is called
twice to add both x and y coordinates to the array. Function
CGDIDoc::GetNumOfPts() returns the number of control points, which is
obtained through dividing the size of the array by 2. Function
CGDIDoc::GetOnePt() returns a specified control point, which is obtained from
two consecutive elements contained in array m_dwaPts.

Curve drawing is implemented in function CGDIView::OnDraw(...) as follows:

(Code omitted)

Since we need 4 control points to draw a curve, the number of curves we can
draw should be equal to the number of points stored in array
CGDIDoc::m_dwaPts divided by 4. In the function, a loop is used to draw each
single curve. Within each loop, four control points are retrieved one by one, and
stored in a local CPoint type array pt. After all four control points are retrieved,
function CDC::PolyBezier(...) is called to draw the curve. Here, we also need to
create a pen and select it into the DC before any drawing operation is
performed.

The rest thing we need to implement is recording control points. In order to do
this, we need to handle two mouse related messages: WM_LBUTTONUP and
WM_MOUSEMOVE. In the sample, their message handlers are added through
using Class Wizard, the corresponding member functions are
CGDIView::OnLButtonUp(...) and CGDIView::OnMouseMove(...) respectively.

Since a curve needs four control points, we use mouse's left button up event to
record them. In the application, a counter is implemented to count how many
control points have been added. Before a new curve is added, this counter is set
to 0. As we receive message WM_LBUTTONUP, the counter will be incremented
by 1. As it reaches 4, we finish recording the control points, store the data in the
document and update the client window.

In the sample, to implement curve drawing, some new variables are declared in
class CGDIView as follows:

(Code omitted)

We are familiar with variables m_bCapture and m_bNeedErase. Here, variable
m_ptCurve will be used to record temporary control points, and m_nCurrentPt
will act as a counter.

Some of the variables are initialized in the constructor:

(Code omitted)

Since m_nCurrentPt starts from 0, we need to count till it reaches 3. In function
CGDIView:: OnLButtonUp(...), if the value of m_nCurrentPt becomes 3, we will
call CGDIDoc::AddPoint(...) four times to add the points stored in array
m_ptCurve to the document, then update the client window. We also need to
reset flags m_nCurrentPt, m_bNeedErase and m_bCapture because the drawing
is now complete. The following is a portion of function
CGDIView::OnLButtonUp(...) that demonstrates how to record the last point and
store data in the document:

(Code omitted)

If m_nCurrentPt is 0, this means it is the first control point. In this case, we do
not need to draw or erase anything. However, we need to set the window
capture.

If m_nCurrentPt is not 0, we need to erase the previous curve, record the new
point, assign its value to the rest points (This is for the convenience of drawing
curve outline, because when we draw a curve, we always need four control
points), and draw the curve outline.

Then the implementation of CGDIView::OnMouseMove(...) becomes easy. We
just need to check if there is an existing curve outline. If so, we need to erase it
before drawing a new curve outline. Otherwise we just draw the curve outline
directly and set m_bNeedErase flag:

(Code omitted)

And that is all we need to do. If we compile and execute the application at this
point, we will be able to draw curves using mouse.

8.4 Other Shapes

There are many other shapes that we can draw using device context. These

shapes include chord, focus rectangle, round rectangle, pie, polygon, 3D
rectangle, and many others. Sample 8.4\GDI demonstrates how to use member
functions of CDC to draw different shapes. It is a standard SDI application
generated by Application Wizard. In the sample, only function
CGDIView::OnDraw(...) is modified, where we demonstrate how to draw the
above-mentioned shapes:

(Code omitted)

The following is the explanation of the functions used above:

BOOL CDC::TextOut(int x, int y, const CString& str);

This function outputs a text string at the specified x-y coordinates. The string is
stored in str parameter. Text color and background color can be set by using
functions CDC::SetTextColor(...) and CDC::SetBkColor(...). Background mode
(specifies if text has transparent or opaque background) can be set by using
function CDC::SetBkMode(...).

BOOL CDC::Chord(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

This function draws a chord formed from an ellipse and a line segment.
Parameter lpRect specifies the bounding rectangle of an ellipse, ptStart and
ptEnd specify the starting and ending points of a line segment (they do not have
to be on the ellipse). The border of the chord will be drawn using the currently
selected pen, and the interior will be filled with the currently selected brush
(Figure 8-1).

void CDC::DrawFocusRect(LPCRECT lpRect);

This function draws a rectangle specified by lpRect parameter. The rectangle will
have a dotted border. If we call this function twice for the same rectangle, the
rectangle will be removed. This is because when drawing the rectangle, the
function uses bit-wise XOR mode.

BOOL CDC::RoundRect(LPCRECT lpRect, POINT point);

The function draws a rectangle specified by lpRect with rounded corners.
Parameter point specifies width and the height of the ellipse that will be used to
draw rounded corners (Figure 8-2). The border of the rectangle will be drawn
with currently selected pen and its interior will be filled with the currently
selected brush.

BOOL CDC::Pie(LPCRECT lpRect, POINT ptStart, POINT ptEnd);

The function draws a pie that is formed from an ellipse and two line segments.
The ellipse is specified by parameter lpRect, and the two line segments are
formed by the center of ellipse and ptStart, ptEnd respectively (Figure 8-3). The
pie will be drawn in the counterclockwise direction. The border of the pie will be
drawn using currently selected pen and its interior will be filled with the currently
selected brush.

BOOL CDC::Polygon(LPPOINT lpPoints, int nCount);

This function draws a polygon. Parameter lpPoints is an array of points
specifying the vertices of the polygon. Parameter nCount indicates the number of
vertices. The border of the polygon will be drawn using currently selected pen
and its interior will be filled with the currently selected brush.

void CDC::Draw3dRect(LPCRECT lpRect, COLORREF clrTopLeft, COLORREF
clrBottomRight);

This function draws a rectangle specified by lpRect. Its upper and left borders
will be drawn using color specified by clrTopLeft, and its bottom and right
borders will be drawn using color specified by clrBottomRight.

8.5 Flood Fill

Flood fill is very useful for applications such as graphic editors. By using this
method, we can easily fill an irregular area with a specified color. In class CDC,
there are two member functions that can be used to implement flood fill:

BOOL CDC::FloodFill(int x, int y, COLORREF crColor);

BOOL CDC::ExtFloodFill(int x, int y, COLORREF crColor, UINT nFillType);

There is a slight difference between the two functions. For function
CDC::FloodFill(...), the filling starts from the point that is specified by
parameters x and y using the brush being selected by the DC, and stretches out
to all directions until a border whose color is the same with parameter crColor is
encountered. The second function allows us to select filling mode, which is
defined by parameter nFillType. Here we have two choices: FLOODFILLBORDER
and FLOODFILLSURFACE. The first filling mode is exactly the same with that of
function CDC::FloodFill(...). For the second mode, the filling starts from the point
specified by parameters x and y, and stretches out to all directions, fills all the
area that has the same color with crColor, until a border with different color is
encountered.

Samples 8.5-1\GDI and 8.5-2\GDI demonstrate how to implement flood fill.
They are based on sample 8.1\GDI. In the samples a new command is added to

the application, it can be used by the user to fill any closed area with gray color.
This closed area can be formed from the lines drawn by the user.

First a button ID_FLOODFILL is added to the tool bar IDR_MAINFRAME. We will
use this button to indicate if the application is in the line drawing mode or flood
filling mode. By default the button will stay in its normal state, at this time the
user can use mouse to draw lines in the client window. If the user clicks this
button, the application will toggle to flood filling mode, at this time, if the user
clicks mouse within the client window, flood filling will happen.

In the sample, both WM_COMMAND and UPDATE_COMMAND_UI message
handlers are added for command ID_FLOODFILL, the corresponding functions
are CGDIDoc::OnFloodfill() and CGDIDoc:: OnUpdateFloodfill(...) respectively.
Also, a Boolean type variable m_bFloodFill is declared in class CGDIDoc, which is
used to indicate the current mode of the application (line drawing mode or flood
filling mode):

(Code omitted)

Function CGDIDoc::GetFloodFill() allows m_bFloodFill to be accessed outside
class CGDIDoc. Variable m_bFloodFill is initialized in the constructor of class
CGDIDoc as follows:

CGDIDoc::CGDIDoc()

{

m_bFloodFill=FALSE;

}

Functions CGDIDoc::OnFloodfill() and CGDIDoc::OnUpdateFloodfill(...) are
implemented as follows:

void CGDIDoc::OnFloodfill()

{

m_bFloodFill=m_bFloodFill ? FALSE:TRUE;

}

void CGDIDoc::OnUpdateFloodfill(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(m_bFloodFill);

}

We need to implement flood filling in response to left button up events when
CGDIDoc::m_bFloodFill is TRUE. So we need to modify function
CGDIView::OnLButtonDown(...). In the sample, we first check flag
CGDIDoc::m_bFloodFill. If it is set, we create a gray brush, select it into the DC
and implement the flood filling. Otherwise we prepare for line drawing as we did
before:

(Code omitted)

In the other two mouse message handlers CGDIView::OnMouseMove(...) and
CGDIView:: OnLButtonUp(...), we also need to check flag
CGDIDoc::m_bFloodFill. If it is not set, we can proceed to implement line
drawing:

(Code omitted)

This will enable flood filling.

Sample 8.5-2\GDI is exactly the same with sample 8.5-1\GDI except that here
we use function CDC:: ExtFloodFill(...) instead of CDC::FloodFill(...). The
following is the difference between the function calling in two samples:

8.5-1\GDI:

dc.FloodFill(point.x, point.y, RGB(255, 0, 0));

8.5-2\GDI:

dc.ExtFloodFill(point.x, point.y, dc.GetPixel(point), FLOODFILLSURFACE);

We call function CDC::GetPixel(...) to retrieve the color of the pixel specified by
point, and fill the area that has the same color with it. The flood filling will
stretch out to all directions until borders with different colors are reached. For
samples 8.5-1\GDI and 8.5-2\GDI, we don't see much difference between
function CDC::ExtFloodFill(...) and CDC::FloodFill(...). However, in the sample, if
the lines can be drawn with different colors, we need to use
CDC::ExtFloodFill(...) rather than CDC::FloodFill(...) to implement flood filling.

8.6 Pattern Brush

Pattern brush is very useful in filling an area with a specific pattern. We already
know how to create a hatch brush, which could have several simple patterns. By
using pattern brush, we are able to create a brush with any custom pattern.

The pattern brush can be created from a bitmap with a dimension of 8(8. If we
use a larger bitmap image, only the upper-left portion of the image (with a size
of 8(8) will be used. The bitmap used to create pattern brush must be stored in
a CBitamp declared variable.

The simplest way of implementing pattern brush is to prepare a bitmap resource,
load it with a CBitmap type variable, then create the brush. The function that
can be used to create pattern brush is CBrush:: CreatePatternBrush(...), which
has the following format:

BOOL CBrush::CreatePatternBrush(CBitmap* pBitmap);

Sample 8.6\GDI demonstrates how to create and use pattern brush. It is based
on sample 8.2-1\GDI. In the new sample, pattern brush is used to fill the interior
of the rectangles instead of solid brush.

First an 8(8 bitmap resource IDB_BITMAP_BRUSH is added to the application.
Here function CGDIView:: OnDraw(...) is modified as follows: 1) A new local
CBitmap type variable bmp is declared, which is used to call function
CBitmap::LoadBitmap(...) for loading bitmap IDB_BITMAP_BRUSH. 2) The
original statement brush.CreateSolidBrush(...) is changed to
brush.CreatePatternBrush(...). The following is the modified function
CGDIView::OnDraw(...):

(Code omitted)

With the above change, we can see the effect of pattern brush.

8.7 Color Approximation

Palette Device vs. Non-Palette Device

When creating a pen or a brush, we need to specify a color. The pen and brush
will use this specified color to perform drawing operations. However, sometimes
it is impossible for the system to create the exact same color as we specified,
because the actual color that can be displayed on the screen depends on the
hardware limitations. The total number of colors that can be displayed at any
time depends on the screen resolution and the amount of video memory. For
example, if we have a screen whose resolution is 1024(768, there are altogether

786432 pixels. If we use red, green and blue combination to specify a pixel, and
each of the three basic colors (red, green and blue) can range from 0 to 255
(256 steps), we nee 3 bytes (24 bits) to specify one pixel on the screen. For
screen with a resolution of 1024(768, the total memory needed is 786,432(
3=2,359,296=2.4 Mega Bytes (In reality, situation is more complex so a video
card of this type requires more memory).

If the hardware has this amount of memory, there will be no problem in
displaying any color specified by the R, G, B combination. This kind of device is
called non-palette device. The advantage of non-palette device is that it is fast
and does not cause color distortion. The disadvantage is obvious: it is expensive.

Contrary to the above approach, palette devices use fewer bytes to represent a
pixel. A very common approach is to represent each pixel using only one byte (8
bits). In this case, with the above assumption, the total amount of video
memory needed will be 786,432 bytes.

However, 8 bits is not enough to specify all possible R, G, B (each ranges from 0
to 255) combinations. The solution here is to use a color table, which contains
256 different R, G, B combinations. In this case, the data stored in the video
memory actually represents an index to the color table. This kind of devices is
called palette device. Although it introduces much inconvenience to the
programmer and may cause color distortion, it is still widely used in all types of
systems because of its inexpensive price.

Color Approximation

Since the index has only 8 bits, the size of this color table is limited to contain no
more than 256 colors. In Windows(, in order to maintain some standard colors
(i.e., the caption bar color, border color, menu color, etc.), some entries of this
color table are reserved for solely storing system colors. The colors stored in
these entries are called Static Colors. For the rest entries of the color table, any
application may fill them with custom colors. When we specify an R, G, B
combination and use it to draw geometrical objects, the actual color appeared on
the screen depends on the available colors contained in the color table. If the
specified color can not be found in the color table, Windows(uses two different
approaches to do the color approximation: for brush, it uses dithering method to
simulate the specified color using the colors that can be found in the color table
(For example, if color gray can not be found in the color table, the system
combines black and white to simulate it); for pen, the n

earest color that can be found in the color table will be used instead of the
specified color.

Sample

Sample 8.7-1\GDI and 8.7-2\GDI demonstrate two different color approximation
approaches. Sample 8.7-1\GDI is a standard SDI application generated from
Application Wizard. In function CGDIView:: OnDraw(...), the client window area
is painted with blue colors that gradually change from dark blue (black) to bright
blue. The GDI object used here is brush.

We need to create 256 different brushes using colors from RGB(0, 0, 0), RGB(0,
0, 1), RGB(0, 0, 2)... to RGB(0, 0, 255). Also, we need to divide the client
window into 256 rows. For each row, a different brush can be used to fill it. This
will generate a visual effect that the color changes gradually from dark blue to
bright blue. The following is the modified function CGDIView::OnDraw(...):

(Code omitted)

First function CWnd::GetClientRect(...) is called to retrieve the dimension of the
client window, which is stored in variable rect. Then the rectangle's vertical size
is shrunk to 1/256 of its original size. Next a 256-step loop is used to fill the
client window. Within each loop, a different blue brush is created, and function
CDC::FillRect(...) is called to fill the rectangle. Before calling this function, we do
not need to select the brush into DC, this is because the second parameter of
function CDC::FillRect(...) is a CBrush type pointer (The DC selection happens
within the function). The difference between function CDC:: Rectangle(...) and
CDC::FillRect(...) is that the former will draw a border with the currently
selected pen while the latter does not draw the border.

Sample 8.7-2\GDI is based on sample 8.7-1\GDI. Here within function
CGDIView::OnDraw(...), pens with different blue colors are created and used to
draw lines for painting each row. The following is the modified function
CGDIView::OnDraw(...):

(Code omitted)

Instead of creating brushes, solid pens are created to paint the client window
area. The width of these pens is the same with the height of each row, and their
colors change gradually from dark blue to bright blue. Within each loop, before
calling functions to draw a line, we select the pen into DC, after the line is
drawn, we select the pen out of the DC. Because a new pen is created in each
loop, function CPen::DeleteObject() is called at the end of the loop. This will
destroy the pen so that variable pen can be initialized again.

Adjusting Display Settings

The two programs must be run on a palette device with a setting of "256 Color"
in order to see the effects of color approximation. Generally this can be adjusted

through changing the settings of the system.

We can do this by first opening application Control Panel (Click "Start" menu, go
to "Settings", select "Control Panel"). Then we ned to double click icon "Display"
and click "Setting" tab from the popped up property sheet. There are a lot of
choices in the combo box that is labeled "Color Palette". Usually it contains
entries such as "24bit", "256 color", "16 Color", etc. The actual available
selections depend on the capability of the video card. If we select "24bit" true
color setting, no dithering effect will be seen in the system. Here we need to
choose "256 color" setting in order to test our samples (Figure 8-4).

Results

Figure 8-5 and Figure 8-6 show the results from the two color approximation
approaches (Please note that if the samples are executed on non-palette device,
we may not see the approximation effect).

User can avoid color approximation by increasing the color depth of the system.
One simple way to do so is to reduce the screen resolution (e.g. from 1024(768
to 800(600): after the total number of pixels is reduced, the number of colors
supported by the system will probably increase.

As a programmer, we need to prepare for the worst situation and make our
application least susceptible to the system setting. To achieve this, we need to
implement local palette.

8.8 Logical Palette

Palette

Palette is another type of GDI objects, it encapsulates a color palette that can be
used to store custom colors in an application. Although programmer can use
logical palette like using an actual palette, it is not a real palette. Within any
system, there is only one existing palette, which is the physical palette (or
system palette). This is why the palettes created in the applications are called
logical palettes. The advantage of using a logical palette is that the colors
defined in the logical palette can be mapped to the system palette in an efficient
way so that least color distortion can be achieved. There is no guarantee that all
the colors implemented in the logical palette will be displayed without color
distortion. Actually, the ultimate color realizing ability depends on the hardware.
For example, if our hardware support only 256 colors and we implement a 512
logical palette, some colors defined in the logical palette will inevitably be
distorted if we display all the 512 colors on the screen at the same time.

Color Mapping

When we implement a logical palette, operating system maps the colors
contained in the logical palette to the system palette using the following method:
for every entry in the logical palette, the system first finds out if there exists a
color in the system palette that is exactly the same with the color contained in
this entry. If so, it will be mapped to the corresponding entry of the system
palette. If no such entry is found in the system palette, the system will find out if
there is any entry in the system palette that is not occupied by any logical
palette. If such an entry exists, the color in the logical palette will be filled into
that entry. If there is no such entry available, the system find out the nearest
color in the system palette and map the entry in the logical palette to it.

For a 256 color system, the operating system reserve 20 static colors as system
colors, which can not be used to fill new colors. This assures that the default
colors of window border, title, button do not change when we implement logical
palettes. These static colors always occupy the first 10 and last 10 entries of the
system palette. The rest 236 entries can be used fill any color.

Foreground and Background Palette

When creating a logical palette, we can either implement it as a "foreground" or
a "background" palette. For foreground logical palette, the operating system
maps the colors contained in the logical palette to the system palette only when
the application is active (has the current focus). For the background logical
palette, the operating system also tries to map the colors contained in the logical
palette to the system palette even it is not active (does not have the current
focus). In this case, the application in the foreground has the highest priority in
mapping its colors to the system palette. If there is still entries left unused, they
may be occupied by the applications in the background. If no such entry is left,
the colors in the background palette will be mapped to the system palette by
finding the nearest colors.

Creating Logical Palette

To create a logical palette, we need to call function CPalette::CreatePalette(...),
which has the following format:

BOOL CPalette::CreatePalette(LPLOGPALETTE lpLogPalette);

The only parameter of this function is a LOGPALETTE type pointer. The following
is the format of structure LOGPALETTE:

typedef struct tagLOGPALETTE {

WORD palVersion;

WORD palNumEntries;

PALETTEENTRY palPalEntry[1];

} LOGPALETTE;

This structure has three members: palVersion specifies the Windows(version of
this structure, which must be set to 0x300; palNumEntries specifies the total
number of entries contained in this palette, and palNumEntries is the first
element of a PALETTEENTRY type array, which stores the color table. Structure
PALETTEENTRY has four members:

typedef struct tagPALETTEENTRY {

BYTE peRed;

BYTE peGreen;

BYTE peBlue;

BYTE peFlags;

} PALETTEENTRY;

Members peRed, peGreen and peBlue specify RGB intensities, and peFlags can
be assigned NULL if we want to create a normal palette (we will see how to set
this flag to create a special palette later). To create a logical palette, we need to
allocate enough buffers for storing LOGPALETTE structure and colors, and call
function CPalette::CreatePalette(...).

Using Logical Palette

Like other GDI objects, we must select a logical palette into the DC in order to
use it. To select palette into the DC, we need to call function
CDC::SelectPalette(...), which has two parameters:

CPalette *CPalette::SelectPalette(CPalette* pPalette, BOOL bForceBackground);

The first parameter is a CPalette type pointer, which stands for the logical
palette we are going to use. The second parameter is a Boolean type variable
indicating if the palette will be selected as a background palette or not.

We need to select the palette out of the DC after using it.

Realizing Palette

The color mapping does not happen if we do not realize the logical palette. We
need to realize the palette in the following situations: 1) After the palette is
created and about to be used. 2) After the colors in the logical palette have
changed. 3) After the colors contained in the system palette have changed. 4)
After the application has regained the focus.

To realize the palette, we need to call function CDC::RealizePalette() to force the
colors in the logical palette to be mapped to the system palette. The format of
this function is very simple:

UINT CDC::RealizePalette();

The returned value indicates how many entries were mapped to the system
palette successfully.

Macro PALETTEINDEX

When a logical palette is selected into the DC, we need to use index to the color
table to reference a color in the palette. In this case, we can use macro
PALETTEINDEX to convert an index to R, G, B combination.

Sample

Sample 8.8-1\GDI and 8.8-2\GDI are based on sample 8.7-1\GDI and 8.7-2\GDI
respectively. They demonstrate how to implement logical palette to avoid color
distortion. In the two samples, the logical palettes contain all colors that will be
used to paint the client window. These colors will be mapped to the colors
contained in the system palette.

In both samples, first a CPalette type variable m_palDraw is declared in class
CGDIView as follows:

class CGDIView : public CView

{

......

protected:

CPalette m_palDraw;

......

};

The palette is created in the constructor of class CGDIView as follows:

(Code omitted)

In the function a LOGPALETTE type pointer is declared, we need to use it to store
the buffers allocated for creating the logical palette. The buffers are allocated
through using "new" method. The following isthe formulae that is used to
calculate the size of the total bytes needed for creating logical palette:

size of structure LOGPALETTE + (number of entries-1)((size of structure
PALETTEENTRY)

Next the palette entries are filled with 256 colors ranging from dark blue to
bright blue. After the logical palette is created, these buffers can be released.

The following is the updated function CGDIView::OnDraw(...) in sample 8.8-
1\GDI:

(Code omitted)

Each time the client window needs to be painted, we first call function
CDC::SelectPalette(...) to select the logical palette into the device context and
call function CDC::RealizePalette() to let the colors in the logical palette be
mapped to the system palette. When creating the brushes, instead of using RGB
macro to specify an R, G, B combination, we need to use PALETTEINDEX macro
to indicate a color contained in the logical palette.

Sample 8.8-2\GDI is implemented almost in the same way: first a CPalette type
variable m_palDraw is declared in class CGDIView, and the palette is created in
its constructor. In function CGDIView::OnDraw(...), before the client window is
painted, the logical palette is selected into the device context. The following is
the modified function CGDIView::OnDraw(...):

(Code omitted)

This function is similar to that of sample 8.8-1\GDI: when creating a pen, we use
PALETTEINDEX macro to indicate a color rather than using an R, G, B
combination.

The samples will improve a lot with the above implementations (If the samples
are executed on non-palette device, there will be no difference between the
samples here and those in the previous section). However, we may still notice a
tiny step between two contiguous blues. This is because for a video device of
this type (256 color), usually the color depth is 18 bits on the hardware level.
This means red, green and blue colors each uses only 6 bits (instead of 8 bits).
So instead of displaying 256-level blue colors, only 64-level blue colors can be
implemented.

8.9 Monitoring System Palette

We know that when a logical palette is realized, the colors contained in the
system palette may change. If we have several applications each implementing a
logical palette, the system palette will change if any application calls function
CDC::RealizePalette(). In Windows(programming, there is a way for us to
monitor the colors contained in the system palette: we can create a logical
palette and explicitly map a logical palette entry to a fixed system palette entry
instead of let the mapping be implemented automatically. By doing this, we have
a way of knowing what colors are contained in certain entries of the system
palette.

Remember in the previous samples, when stuffing structure PALETTEENTRY, we
set NULL to its peFlags member. Actually, it can also be set to one of the
following three values: PC_EXPLICIT, PC_NOCOLLAPSE and PC_RESERVED.

If peFlags is set to PC_EXPLICIT, we can create a palette whose entries are
mapped directly to the specified entries in the system palette. In this case, the
low order of structure PALETTEENTRY (the combination of peRed and peGreen
members) indicates an index to the system palette, and member peBlue has no
effect.

Because non-static entries in the system palette may change constantly, if we
use such a palette to implement drawing, the colors we draw will also change
constantly with the system palette.

Sample 8.9\GDI demonstrates how to implement such kind of palette. It is a
standard SDI application generated by Application Wizard. In the sample, the
palette is implemented and is used to paint the client window of the application.
The client window is divided into 256 rectangles, and each rectangle is painted
using the color contained in one of the system palette entry. So when a logical
palette is realized from other application, we can see the changes from the client
window.

In the sample, first a CPalette type variable m_palSys is declared in class
CGDIView:

class CGDIView : public CView

{

......

protected:

CPalette m_palSys;

......

};

In the constructor, the logical palette is created as follows:

(Code omitted)

The procedure above is almost the same with creating a normal logical palette.
The only difference here is that when stuffing structure PALETTEENTRY, the low
order word of the structure is filled with an index to the system palette entry
(from 0 to 255), and member peFlags is set to PC_EXPLICIT.

Function CGDIView::OnDraw(...) is implemented as follows:

(Code omitted)

The client area is divided into 256 (16(16) rectangles. For each rectangle, a
brush using a specific logical palette entry is created. Then function
CDC::Rectangle(...) is called to draw the rectangle. Because no pen is selected
into the DC, the default pen will be used to draw the border of the rectangles.

The application can be compiled and executed at this point. There are 256
rectangles in the client window, each represents one color contained in the
system palette. By paying attention to the first 10 and last 10 entries, we will
notice that the colors contained in these entries never change (because they are
static colors). Other colors will change from time to time as we open and close
graphic applications. We can use samples 8.8-1\GDI or 8.8-2\GDI to test this.

Please note that if the sample is executed on non-palette device, the logical
palette will not represent the system palette. This is because on the hardware
level, palette does not exist at all.

8.10 Palette Animation

Flag PC_RESERVED

Another interesting flag we can use when creating a logical palette is
PC_RESERVED, which can be used to implement palette animation. If we have a
logical palette with this flag set for some entries, the colors in these entries will
only be mapped to the unused entries of the system palette. If the mapping is
successful, when we change the colors in the logical palette, the entries in the
system palette will also change. If any portion of window is painted with such
entries, this change will affect that portion. This is the reason why a logical entry
with PC_RESERVED flag can not be mapped to an occupied entry.

The following table lists the difference between a normal logical palette entry
and an entry with PC_RESERVED flag:

(Table omitted)

While we can change the color of any area in a window by painting it again
(using a different brush or pen), the above mentioned method has two
advantages:

1) If we have several areas painted with the same color, the new method will
cause all of them to change at the same time once the old color is replaced with
a new one in the logical palette. For the traditional method, we have to draw
each area one by one to make this change, it takes longer time.

2) If we draw each area one by one, the change takes place in software level.
For the new method, the color is filled to the system palette directly (This
change happens at the hardware level), which is extremely fast.

Animation

With this method, it is very easy to implement an animation effect. For example,
considering an array of four rectangles that are filled with the following four
different colors respectively: red, green, blue and black. If we paint the four
rectangles with green, blue, black, red next time, and blue, black, red, green
next next time, and so on..., this will give us an impression that the rectangles
are doing rotating shift. One way to implement this effect is to redraw four
rectangles again and again using different colors (which means using different
entries to draw the same rectangle again and again). Another way is to switch
the colors in the palette directly.

Sample 8-10\GDI demonstrates how to implement palette animation. It is a
standard SDI application generated from Application Wizard. In the sample, the

client area is divided into 236 columns, each row is painted with a different
color. The colors in the logical palette will be shifting all the time, and we will see
that the colors in the client window will also shift accordingly.

Among 256 system palette entries, only 236 of them contain non-static colors,
so in the sample, a logical palette with 236 entries is created. The colors
contained in this palette change gradually from red to green, and from green to
blue. Figure 8-7 shows the RGB combination of each entry (i.e., entry 0 contains
RGB(255, 0, 0), entry 79 contains RGB(0, 255, 0)...).

Sample

First three variables are declared in class CGDIView:

class CGDIView : public CView

{

......

protected:

int m_nEntryID;

PALETTEENTRY m_palEntry[236*2-1];

CPalette m_palAni;

......

};

Variable m_palAni is used to create the animation palette, and array m_palEntry
will be used to implement color shifting. When we shift the palette entries, it
would be much faster if we use function memcpy(...) to copy all the entries in
just one stroke. To achieve this, we keep all the colors in a PALETTEENTRY type
array whose size is twice the logical palette size minus one. The original 236
colors are stored in entries 0, 1, 2... to 235, and entries 236, 237, 238...470
store the same colors as those contained in entries 0, 1, 2... 234. Also, we use
variable m_nEntryID to indicate the current starting entry of the logical palette.
For example, if m_nEntryID is 2, the logical palette should be filled with colors
contained in entries 2 to 237 of m_palEntry. If m_nEntryID reaches 236, we
need to reset it to 0. Figure 8-8 demonstrates this procedure.

First, 236 different colors are filled into entries from 0 to 235 for variable
m_palEntry in the constructor of class CGDIView as follows:

(Code omitted)

This distribution of RGB values is the same with the graph shown in figure 8-8.
Next, the colors contained in entries from 0 to 234 are copied to entries from
236 to end:

(Code omitted)

Next, we use entries from 0 to 235 contained in m_palEntry to create logical
palette (using variable m_palAni), and assign 0 to variable m_nEntryID:

(Code omitted)

Note when filling array m_palEntry, we need to assign PC_RESERVED flag to
member peFlags of structure PALETTEENTRY for every element. This flag will be
copied to array pointed by lpLogPal when we actually create the palette. As we
refill the palette entries again and again, these flags should remain unchanged
all the time. Otherwise, the entries can not be changed dynamically.

To realize the animation, we need to implement a timer, and change the palette
when it times out. The best place to start the timer is in function
CView::OnInitialUpdate(), where the view is just created. In the sample, this
function is added through using Class Wizard, and is implemented as follows:

void CGDIView::OnInitialUpdate()

{

SetTimer(TIMER_ANIMATE, 100, NULL);

CView::OnInitialUpdate();

}

Macro TIMER_ANIMATE is defined at the beginning of the implementation file,
which acts as the ID of the timer:

#define TIMER_ANIMATE 500

We can use any integer as the timer ID.

Next, a WM_TIMER type message handler is added to class CGDIView through
using Class Wizard, which is implemented as follows:

(Code omitted)

Like other drawing operations, before implementing palette animation, we must
select the palette into target DC and realize it. After the animation is done, we
need to select the palette out of DC. The palette animation is implemented
through calling function CPalette::AnimatePalette(...), which has the following
format:

void CPalette::AnimatePalette

(

UINT nStartIndex, UINT nNumEntries, LPPALETTEENTRY lpPaletteColors

);

The first parameter nStarIndex is the index indicating the first entry that will be
filled with a new color, the second parameter nNumEntries indicates the total
number of entries whose color will be changed, and the last parameter is a
PALETTEENTRY type pointer which indicates buffers containing new colors.

If we call this function and change the contents of a logical palette, only those
entries with PC_RESERVED flags will be affected.

The last thing we need to do is painting the client area using animation palette in
function CGDIView:: OnDraw(...):

(Code omitted)

This is very straight forward, we just divide the client area into 236 columns and
paint each column using one color contained in the logical palette. Note in
function CGDIView::OnTimer(...), after palette animation is implemented, we do
not need to call function CWnd::Invalidate() to update the client window.

Now the application can be compiled and executed. If we execute this application
along with sample 8.9\GDI, we will see how system palette changes when the
animation is undergoing (We can put sample 8.9\GDI in background to monitor
the system palette): as the colors in the client window shifts, the colors in the
system palette will also change.

Palette animation can also be used to implement special visual effect on bitmaps

such as fade out. This function only works on palette type video device.

Please note that if the sample is executed on non-palette device, the animation
effect can not be seen. This is because there is no palette on the hardware level.

8.11 Find Out Device Capability

There are many type of devices, each has a different capability. Some use
palette to implement colors, others use 24 bits to store an RGB value directly.
Before a program is about to run, it might be a good idea to find out the
capabilities of hardware and use different approaches to implement colors.

In MFC, there is a function that can be used to detect the capabilities of a
device:

int CDC::GetDeviceCaps(int nIndex);

By passing different flags to parameter nIndex, we can retrieve different
attributes of a device. The following is a list of some important flags that can be
used:

(Table omitted)

Sample 8.11\GDI demonstrates how to check the abilities of a device. It is a
standard SDI application generated from Application Wizard. In the sample,
ability checking is implemented in the initialization stage of the client window.

For this purpose, function CGDIView::OnInitialUpdate() is added to the
application through using Application Wizard. In this function, various device
abilities are checked and the result is displayed in a message box:

(Code omitted)

Here we check if the device is a palette device or not. If it is a palette device, we
further find out the maximum number of colors it supports, the number of static
colors reserved, and the actual color resolution for each pixel. Also, the device's
horizontal and vertical sizes are retrieved.

This function is especially useful in finding out if the device is a palette device or
not. With this information, we can decide if the logical palette should be used in
the application.

The following lists the capabilities of certain device:

It is a palette device

The device supports 256 colors

There are 20 static colors

Color resolution is 18 bits

Horizontal size is 270 mm, 1024 pixels

Vertical size is 203 mm, 768 pixels

Summary:

1) Before drawing anything to a window, we must first obtain its device context.
There are many ways of obtaining a window's DC (Calling function
CWnd::GetDC(), declaring CClientDC or CWindowDC type variables, etc.).

2) A client DC can be used to paint a window's client area, and a window DC can
be used to paint the whole window (client and non-client area).

3) Pen can be used to draw line, the border of rectangle, polygon, ellipse, etc. A
pen can have different styles: solid pen, dotted pen, dashed pen, etc.

4) Brush can be used to fill the interior of rectangle, polygon, ellipse, etc. A
brush can have different patterns: solid, hatched, etc.

5) We can use an 8(8 image to create pattern brush.

6) On a palette device, there are two color approaching methods: dithering and
using the nearest color.

7) Logical palette can be used to avoid color distortion. To use a logical palette,
we need to create it, select it into DC, and realize the palette.

8) System palette can be monitored by creating a logical palette whose entries
are set to PC_EXPLICIT flags.

9) Palette animation can be implemented by creating a logical palette whose
entries are set to PC_RESERVED flag.

10) The abilities of a device can be retrieved by calling function
CDC::GetDeviceCaps().

BACK TO INDEX

Chapter 9 Font

Font is another very important GDI object, every application deals with font.
Usually a system contains some default fonts that can be used by all the
applications. Besides these default fonts, we can also install fonts provided by the
thirty party. For word processing applications, using font is a complex issue.
There are many things we need to take care. For example, when creating this
type of applications, we need to think about the following issues: how to display a
font with different styles; how to change the text alignment; how to add special
effects to characters.

9.1 Outputting Text Using Different Fonts

When we implement a font dialog box, all the available fonts contained in the
system will be listed in it. We can select font size, font name, special styles, and
text color.

Like other GDI objects such as pen and brush, we need to create font with
specific styles and select it into a DC in order to use it for outputting text. In MFC,
the class that can be used to implement font is CFont. To create a font, we can
call either CFont::CreateFont(...) or CFont::CreateFontIndirect(...), whose
formats are listed as follows:

(Code omitted)

The first function has many parameters and the second one needs only a
LOGFONT type pointer. The results of the two member functions are exactly the
same, every style we need to specify for a font in the first function has a
corresponding member in structure LOGFONT:

typedef struct tagLOGFONT{

LONG lfHeight;

LONG lfWidth;

LONG lfEscapement;

LONG lfOrientation;

LONG lfWeight;

BYTE lfItalic;

BYTE lfUnderline;

BYTE lfStrikeOut;

BYTE lfCharSet;

BYTE lfOutPrecision;

BYTE lfClipPrecision;

BYTE lfQuality;

BYTE lfPitchAndFamily;

TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT;

Here, member lfFaceName specifies the font name; lfHeight and lfWidth specify
font size; lfWeight, lfItalic, lfUnderline and lfStrikeOut specify font styles. Besides
these styles, there are two other styles that can be specified: lfEscapement and
lfOrientation.

Under Windows 95, lfEscapement and lfOrientation must be assigned the same
value when a font is being created. If they are non-zero, the text will have an
angle with respect to the horizontal border of the window when it is displayed
(Figure 9-1). To display text this way, we must assign the angle to both
lfEscapement and lfOrientation when creating the font, the unit of the angle is
one tenth of a degree. Please note that only True Type fonts can have such
orientation.

After a font is created, it can be selected into DC for outputting text. After the
text output is over, it must be selected out of the DC. This procedure is exactly
the same with other GDI objects.

Sample 9.1\GDI demonstrates how to create and use a font with specified styles.
It is a standard SDI application generated by Application Wizard. In the sample,
the user can choose any available font in the system and set its styles (bold,

italic, underline, etc). The face name of the font will be displayed in the client
window using the selected font, and the user can also set the escapement of the
font.

Two variables are added to class CGDIDoc: CGDIDoc::m_fontDraw and
CGDIDoc::m_colorFont. The first variable is declared as a CFont type variable, it
will be used to create the font. The second variable is declared as a COLORREF
type variable, it will be used to store the color of the text.

Besides font color, we also need to consider the background color of the text. A
text can be displayed with either a transparent or opaque background. In the
latter case, we can set the background to different colors. In order to display text
in different styles, another Boolean type variable CGDIDoc:: m_bTransparentBgd
is declared, it will be used to indicate if the background is transparent or opaque.

The following is the modified class CGDIDoc:

(Code omitted)

Besides the three new member variables, there are also three new member
functions added to the class. These functions allow the information stored in
CGDIDoc to be accessible outside the class, they are CGDIDoc
::GetCurrentFont(), CGDIDoc::GetFontColor() and CGDIDoc::GetBgdStyle().

The above variables are initialized in the constructor of class CGDIDoc:

(Code omitted)

When a DC is created, it selects the default font, pen, brush and other GDI
objects. So here we create a DC that does not belong to any window, and call
function CDC::GetCurrentFont() to obtain its currently selected font (which is the
default font). Then function CFont::GetLogFont(...) is called to retrieve the font
information, which is stored in a LOGFONT type object. With this object, we can
create a system default font by calling function CFont::CreateFontIndirect(...). By
default, the font color is set to black and the text background mode is set to
transparent.

We need to provide a way of letting user modify the font styles. This can be
easily implemented by using a font common dialog box. In the sample, two
commands are added to the application: Font | Select and Font | Escapement and
Orientation, whose IDs are ID_FONT_SELECT and ID_FONT_STYLE respectively.
Also, message handlers are added through using Class Wizard, the corresponding
functions are CGDIDoc::OnFontStyle() and CGDIDoc::OnFontSelect().

Function CGDIDoc::OnFontSelect() lets the user select a font, set its styles, and

specify the text color. It is impelemented as follows:

(Code omitted)

A font common dialog is implemented to let the user pick up a font. If a font is
selected, function CFontDialog::GetCurrentFont(...) is called to retrieve the
information of the font, which is stored in a LOGFONT type object. Because
member m_fontDraw is already initialized, we need to delete the old font before
creating a new one. The font is created by calling function
CFont::CreateFontIndirect(...). After this the color of the font is retrieved by
calling function CFontDialog::GetColor(), and stored in the variable
CGDIDoc::m_colorFont. Finally function CDocument::UpdateAllViews(...) is called
to update the client window of the application.

Since font common dialog box does not contain escapement and orientation
choices, we have to implement an extra dialog box to let the user set them. In
the sample, dialog template IDD_DIALOG_STYLE is added for this purpose.
Within this template, besides the default "OK" and "Cancel" buttons, there are
two other controls included in the dialog box: edit box IDC_EDIT_ESP, which
allows the user to set escapement angle; check box IDC_CHECK, which allows
the user to select text background style (transparent or opaque). A new class
CStyleDlg is added for this dialog template, within which two variables m_lEsp
(long type) and m_bBgdStyle (Boolean type) are declared. Both of them are
added through using Class Wizard, and are associated with controls
IDC_EDIT_ESP and IDC_CHECK respectively.

Command Font | Escapement and Orientation is implemented as follows:

(Code omitted)

First function CFont::GetLogFont(...) is called to retrieve the information of the
current font, which is then stored in a LOGFONT type object. Before the dialog
box is invoked, its members CStyleDlg::m_lEsp and CStyleDlg::m_bBgdStyle are
initialized so that the current font's escapement angle and background style will
be displayed in the dialog box. After function CDialog::DoModal() is called, the
new value of CStyleDlg::m_lEsp is stored back to members lfEscapement and
lfOrientation of structure LOGFONT, and the new value of
CStyleDlg::m_bBgdStyle is stored to variable CGDIDoc::m_bTransparentBgd.
Then the old font is deleted and the new font is created. Finally, function
CGDIDoc::UpdateAllViews(...) is called to update the client window.

When we call function CDocument::UpdateAllViews(...), the associated view's
member function OnDraw(...) will be called automatically. So we need to modify
this function to display the font specified by variable CGDIDoc::m_fontDraw. The
following is the implementation of function CGDIView::OnDraw():

(Code omitted)

First, function CGDIDoc::GetCurrentFont() is called to retrieve the currently
selected font from the document, then function CFont::GetLogFont(...) is called
to retrieve the information of this font (the face name of the font will be used as
the output string). Next, the font is selected into the target DC. Also,
CGDIDoc::GetFontColor() is called to retrieve the current font color, and
CDC::SetTextColor(...) is called to set the text foreground color. Then,
CGDIDoc::GetBgdStyle(...) is called to see if the text should be drawn with an
opaque or transparent background, and CDC::SetBkMode(...) is called to set the
background style. Next, the text background color is set to the inverse of the
foreground color by calling function CDC::SetBkColor(...) (If text background
style is transparent, this operation has no effect). Finally, function
CDC::TextOut(...) is called to display font's face name in the client window, and
the font is selected out of the DC.

The default font displayed in the client window should be "System", which is not a
True Type font. To see how a text can be displayed with different escapement
angles, we need to choose a True Type font such as "Arial". Please note that the
unit of the escapement angle is on tenth of a degree, so if we want to display the
text vertically, escapement angle should be set to 900.

9.2 Enumerating Fonts in the System

Font Types

There are three type of fonts in Windows(system: raster font, vector font and
True Type font. The difference among them is how the character glyph is stored
for each type of fonts. For raster fonts, the glyph is simply a bitmap; for vector
fonts, the glyph is a collection of end points that define the line segments; for
true type fonts, the glyph is a collection of line and curve commands. The raster
fonts can not be drawn in a scaled size, they are device dependent (the size of
the output depends on the resolution of the device). The vector fonts and true
Type Fonts are device independent because they are scalable, however, drawing
True Type fonts is faster than drawing vector fonts. This is because the glyph of
True Type fonts contains commands and hints.

Enumerating Font Family

We can find out all the font families installed in a system by calling API function
::EnumFontFamilies(...), which has the following format:

int EnumFontFamilies

(

HDC hdc, LPCTSTR lpszFamily, FONTENUMPROC lpEnumFontFamProc, LPARAM
lParam

);

The first parameter hdc is the handle to a device context, which can be obtained
from any window.

The second parameter lpszFamily specifies the font family name that will be
enumerated, it could be any of "Decorative", "Dontcare", "Modern", "Roman",
"Script" and "Swiss". To enumerate all fonts in the system, we just need to pass
NULL to it.

The third parameter is a pointer to callback function, which will be used to
implement the actual enumeration. This function must be provided by the
programmer.

The final parameter lParam is a user-defined parameter that allows us to send
information to the callback function.

The callback function must have the following format:

int CALLBACK EnumFontFamProc

(

ENUMLOGFONT FAR *lpelf, NEWTEXTMETRIC FAR *lpntm, int FontType, LPARAM
lParam

);

Each time a new font family is enumerated, this function is called by the system.
So the function will be called for all the available font types (e.g. if there are
three types of fonts in the system, this funciton will be called three times by the
system). The font's information is stored in an ENUMLOGFONT type object that is
pointed by lpelf, and the font type is specified by FontType parameter. We can
check RASTER_FONTTYPE or TRUETYPE_FONTTYPE bit of FontType to judge if the
font is a raster font or a true type font. The final parameter lParam will be used to
store the information that is passed through the user defined parameter (lParam
in the function ::EnumFontFamilies(...)).

Sample 9.2\GDI demonstrates how to enumerate all the valid fonts in the
system. It is a standard SDI application generated by Application Wizard. The
application will display all the available fonts in the client window after it is
executed. Because there are many types of fonts, the view class of this

application is derived from CScrollView (This can be set in the final step of
Application Wizard).

First, an int type array is declared in class CGDIView:

class CGDIView : public CScrollView

{

protected:

int m_nFontCount[3];

......

}

The first element of this array will be used to record the number of raster fonts in
the system, the second and the third elements will be used to store the number
of vector and true type fonts respectively. The array is initialized in the
constructor as follows:

CGDIView::CGDIView()

{

m_nFontCount[0]=m_nFontCount[1]=m_nFontCount[2]=0;

}

We need to create the callback function in order to implement the enumeration.
In the sample, a global function ::EnumFontFamProc(...) is declared as follows
(This function can also be declared as a static member function):

int CALLBACK EnumFontFamProc(LPLOGFONT, LPNEWTEXTMETRIC, DWORD,
LPVOID);

This function is implemented as follows:

(Code omitted)

We will use user-defined parameter lParam in the function
::EnumFontFamilies(...) to pass the address of CGDIView::m_nFontCount into
the callback function, so that we can fill the font's information into this array

when the enumeration is undergoing. In the callback function, the address of
CGDIView:: m_nFontCount is received by parameter pFontCount, which is then
cast to an integer type pointer. The font type is retrieved by examining
parameter FontType, if the font is a raster font, the first element of CGDIView::
m_nFontCount will be incremented; if the font is a true type font, the third
element will be incremented; in the rest case, the font must be a vector font, and
the second element will be incremented.

The best place to implement the font enumeration is in function
CView::OnInitialUpdate(), when the view is first created. In the sample, a client
DC is created and function ::EnumFontFamilies(...) is called. When doing this, we
pass the address of CGDIView::m_nFontCount as a user-defined parameter:

(Code omitted)

Still, we need to display the result in function CView::OnDraw(...). In the sample,
this function is implemented as follows:

(Code omitted)

We just display three lines of text indicating how many fonts are contained in the
system for each different font family.

Enumerating Font

Apart from the above information (how many fonts there are for each font
family), we may further want to know the exact properties of every font type
(i.e., face name). To implement this, we need to allocate enough memory to
store the information of all fonts. Here, the size of this buffer depends on the
number of fonts whose properties are to be retrieved. Since each font need a
LOGFONT structure to store all its information, we can use the following formulae
to calculate the required buffer size:

(sizeof structure LOGFONT) * (number of fonts)

For this purpose, in the sample, another two variables are declared in class
CGDIView as follows:

class CGDIView : public CScrollView

{

protected:

......

LPLOGFONT m_lpLf[3];

CFont *m_ptrFont;

......

}

Array m_lpLf will be used to store LOGFONT information, and m_ptrFont will be
used to store CFont type variables. The variables are initialized in the constructor
as follows:

CGDIView::CGDIView()

{

......

m_lpLf[0]=m_lpLf[1]=m_lpLf[2]=NULL;

m_ptrFont=NULL;

}

We need to provide another callback function to retrieve the actual information
for each font type. In the sample, this callback function is declared and
implemented as follows:

int CALLBACK EnumFontProc(LPLOGFONT, LPNEWTEXTMETRIC, DWORD,
LPVOID);

(Code omitted)

Three static variables are declared here to act as the counters for each type of
fonts. When this function is called, the information of the font is copied from lplf
to the buffers allocated in CGDIView:: OnInitialUpdate(), whose address is passed
through user-defined parameter.

In function CGDIView::OnInitialUpdate(), after the font families are enumerated,
we need to allocate enough memory, implement the enumeration again for every
single type of font:

(Code omitted)

After obtaining the information for each type of font, we create a font using this
information by calling function CFont::CreateFontIndirect(...). The addresses of
these font objects are stored in array CGDIView::m_ptrFont.

In function CGDIView::OnDraw(...), the face names of all fonts are output to the
client window:

(Code omitted)

For each font family, all the font face names are listed. Three loops are used for
this purpose. Within each loop, one of the enumerated font is selected into the
target DC, and function CDC::TextOut(...) is called to output the font's face name
to the window. To avoid text from overlapping one another, a local variable nYPos
is used as the vertical orgin of the output text, which will increment each time
after a line of text is output to the window.

Because the memory is allocated at the initialization stage, we need to free it
when the application exits. In the sample, WM_DESTROY message handler is
added to class CGDIView through using Class Wizard, and the corresponding
member function is implemented as follows:

(Code omitted)

The application is now ready to enumerate all the available fonts in the system.

9.3 Output Text Using CDC::ExtTextOut(...)

Function CDC::ExtTextOut(...)

Usually we use function CDC::TextOut(...) to output text. There is another
powerful function CDC:: ExtTextOut(...), which allows us to output the text to a
specified rectange. We can use either transparent or opaque drawing mode. In
the latter case, we can also specify a background color. Besides this, we can set
the distances between neighboring characters of the text. One version of function
CDC::ExtTextOut(...) has the following format:

BOOL CDC::ExtTextOut

(

int x, int y,

UINT nOptions, LPCRECT lpRect, const CString &str, LPINT lpDxWidths

);

Like CDC::TextOut(...), the first two parameters x and y specify the position of
the output text. The third parameter nOptions indicates the drawing mode, it
could be any type of combination between ETO_CLIPPED and ETO_OPAQUE flags
(Either flag bit can be set or not set, altogether there are four possibilities). Style
ETO_CLIPPED allows us to output text within a specified rectangle, and restrict
the drawing within the rectangle even if the size of the text is bigger than the
rectangle. In this case, all interior part of the rectangle not occupied by the text is
treated as background. The third parameter is a CString type value that specifies
the actual text we want to output. The last parameter is a pointer to an array of
integers, which specify the distances between origins of two adjacent characters.
This gives us the control of placing each character within a text string to a
specified place. If we pass NULL to this parameter, the default spacing method
will be applied.

A very typical use of this function is to implement a progress bar with percentage
displayed in it (Figure 9-2). The progress bar is divided into two parts. For one
part the text color is white and the background color is blue, for the other part
the text color is blue and the background color is white.

New Class

Sample 9.3\GDI demonstrates how to implement this percentage bar. It is a
standard SDI application generated from Application Wizard.

First a new class CPercent is added to the application through using Class Wizard,
this class will be used to implement the percentage bar. Here, the base class is
selected as CStatic.

The purpose of choosing CStatic as the base class is that by doing this, we can
easily use subclass method to change a static control contained in dialog box to a
percentage bar. Of course, we can choose other type of controls such as CButton
to change a button to a percentage bar.

Two variables m_nRange and m_nCurPos along with two functions are added to
class CPercent. Also, WM_PAINT message handler is added to the class through
using Class Wizard, and the corresponding member funtion is OnPaint(). The
following is this new class:

(Code omitted)

Variable m_nRange indicates the range of the percentage bar, and m_nCurPos
indicates the current position. They are initialized in the constructor:

CPercent::CPercent()

{

m_nRange=100;

m_nCurPos=0;

}

Funtions CPercent::SetPercentage(...) and CPercent::SetPosition(...) allow us to
change the value of m_nCurPos, and CPercent::SetRange(...) allows us to change
the total range.

Within function CPercent::OnPaint(), we will draw the percentage bar using the
values of m_nRange and m_nCurPos.

We need to check if m_nRange is zero. If so, we can not draw the percentage
bar. If not, we need to first find out the size of the window (the static control
window) within which the percentage bar will be drawn. This information is stored
in a local variable rect. Next, we create the text string and store it in another
local variable szStr, whose format is "XXX%" (XXX represents a number between
0 and 100). To place the text in the center of the rectangle, we need to know its
dimension.

To retrieve the dimension of a text string, we need to call function
CDC::GetTextExtent(...) and pass the actual string to it. The function will return a
CSize type value that specifies the dimension of this text.

The percentage bar is divided into two portions. On the left side of the rectangle,
the text color is white and the background color is blue. The following portion of
function CPercent::OnPaint() shows how to create text string, set foreground and
background colors, and retrieve the dimension of the text:

(Code omitted)

Next, the dimension of the left side rectange of the percentage bar is stored in
local variable rectHalf. Then function CDC::ExtTextOut(...) is called to draw the
left part of the percentage bar (Mode ETO_CLIPPED is used here, it will restrict
the drawing within the rectangle). Because ETO_OPAQUE flag is also used, the
text will be drawn with white color and the rest part of rectangle (specified by
rectHalf) will all be painted blue:

(Code omitted)

Then we swap the text and background colors, store the right side rectangle in

variable rectHalf, and call CDC::ExtTextOut(...) again to draw the rest part of the
percentage bar:

(Code omitted)

The last two statements resume the original text color and background color for
the device context.

Implementing Percentage Bar

It is very simple to use class CPercent to implement subclass for a static control
contained in a dialog box. In the sample, a dialog template IDD_DIALOG is added
to the application, it contains an "OK" button and a picture control whose ID is
IDC_STATIC_PROG. The control has a modal frame whose color is set to "Gray",
this will let the percentage bar have a 3-D effect. The above two styles can be set
in the "Picture Properties" property sheet (See Figure 9-3 and Figure 9-4).

Class CProgDlg is added to the application for template IDD_DIALOG. In the
class, a CPercent type variable m_perBar along with an integer type variable
m_nPercent are declared:

class CProgDlg : public CDialog

{

......

protected:

CPercent m_perBar;

int m_nPercent;

......

}

Variable m_perBar will be used to implement percentange bar, and m_nPercent
will be used to record the current position of the percentage bar.

Variable m_nPercent is initialized in the constructor:

(Code omitted)

In the sample, WM_INITDIALOG message handler is added to the application
through using Class Wizard, and funtion CProgDlg::OnInitDialog() is implemented
as follows:

(Code omitted)

Control IDC_STATIC_PROG is changed to a progress bar through implementing
subclass, then a timer is started to generate events that will be handled to
advance the percentage bar.

To handle time out events, in the sample, a WM_TIMER message handler is
added throgh using Class Wizard. The corresponding member function
CProgDlg::OnTimer(...) is implemented as follows:

(Code omitted)

If timer times out, we advance the percentage bar one step forward (1%); if the
percentage bar reaches 100%, we reset it to 0%.

We must destroy timer when the application exits. The best place of doing this is
when we receive WM_DESTROY message. This message handler can also be
added through using Class Wizard. In the sample, the corresponding member
function is implemented as follows:

void CProgDlg::OnDestroy()

{

CDialog::OnDestroy();

KillTimer(TIMER_ID);

}

For the purpose of testing the percentage bar, a new command Dialog | Progress
is added to the application, whose command ID is ID_DIALOG_PROGRESS. A
WM_COMMAND message handler is added to class CGDIDoc for this command,
and the corresponding member function CGDIDoc::OnDialogProgress() is
implemneted as follows:

void CGDIDoc::OnDialogProgress()

{

CProgDlg dlg;

dlg.DoModal();

}

After all these implementations, we can execute command Dialog | Progress to
test the percentage bar.

9.4 One-Line Text Editor, Step 1: Displaying a Static String

From now on we are going to implement a very simple one-line text editor: it will
display only one line text that can be edited through using mouse and keyboard.
We will implement many features of a standard editor such as font selection,
changing text styles. The sample application in this section does not introduce
any new concept, it is the base of later sections.

Sample 9.4\GDI is a standard SDI application generated by Application Wizard.
Because the horizontal size of the text string may be bigger than that of the client
window as the user input more and more characters, we need to add scroll bars
to the application. In order to do this, we can choose CScrollView as the base
class of the client window in the final step of Application Wizard.

The sample does nothing but displaying a static text in the client window. Other
features of text editor will be implemented in later sections.

Two variables m_szText and m_ftDraw along with two member functions are
declared in class CGDIDoc:

(Code omitted)

Variable m_szText will be used to store the text string, and m_ftDraw will be
used to store the font used for text drawing. Functions CGDIDoc::GetText() and
CGDIDoc::GetFont() provide a way of accessing the two member variables
outside class CGDIDoc.

Because we still do not have an interactive input environment, in the constructor,
variable m_szText is initialized to a fixed string:

CGDIDoc::CGDIDoc()

{

m_szText="This is just a test string";

}

In the sample, function CGDIDoc::OnNewDocument() is modified as follows:

(Code omitted)

This function will be called when the document is initialized. Within the function,
variable m_ftDraw is used to create a default font. Since the document is always
created before the view, creating the font in this function will guarantee that
m_ftDraw will be a valid font when the view is created. This procedure can also
be done in the constructor.

To let the user select different types of fonts, a new command Dialog | Font is
added to application's mainframe menu IDR_MAINFRAME. The resource ID of this
command is ID_DIALOG_FONT and the corresponding message handler is
CGDIDoc::OnDialogFont(), which is implemented as follows:

(Code omitted)

After a new font is selected by the user, we delete the old font and create a new
one, then call function CDocument::UpdateAllViews(...) to update the client
window.

On the view side, we need to modify function CGDIView::OnDraw(...). In this
function, the text string and the font are retrieved from the document, and are
used to draw text in the client window:

(Code omitted)

With the above implementation, the application will display a static string.
Although we still can not input any character, the font for drawing the text can be
changed through executing Dialog | Font command.

9.5 One Line Text Editor, Step 2: Adding Caret

Caret Functions

Caret is a very important feature for text editor, it indicates the current editing
position. This makes the interface more user friendly. Because there are many
types of fonts in the system, and for each font, the width of different characters
may vary, we need to make careful calculation before moving the caret to the
next position.

Every class derived from the CWnd supports caret, the steps of implementing
caret are as follows: 1) Create a caret with specific style. 2) Show the caret. 3)
Destroy the caret before the window is destroyed.

The following three member functions can be used to create a caret:

void CWnd::CreateSolidCaret(int nWidth, int nHeight);

void CWnd::CreateGrayCaret(int nWidth, int nHeight);

void CWnd::CreateCaret(CBitmap *pBitmap);

The first member function allows us to create a solid caret, here parameters
nWidth and nHeight specify the dimension of the caret. Similarly, the second
function can be used to create a gray caret. The last function can create a caret
from a bitmap so that the caret can have a custom pattern.

After the caret is created, we can call function CWnd::ShowCaret() to display the
caret or call function CWnd::HideCaret() to hide the caret.

The difficult thing on managing caret is to set its position. Because every
character may have a different width, when the user presses arrow keys, we can
not advance the caret with fixed distance each time. We must move the caret
forward or backward according to the width of the character located before (or
after) the caret. In order to do this, we can either calculate the new caret position
each time, or we can store the starting position of each character in a table and
obtain the caret position from it whenever the caret needs to be moved. In the
sample, the latter solution is used.

Sample

Sample 9.5\GDI demonstrates how to implemnt caret. It is based on sample
9.4\GDI.

First, some new variables and functions are added to class CGDIDoc for caret
implementation:

(Code omitted)

Two variables m_nCaretIndex and m_nCaretVerSize are added. The first variable
is the index indicating the position of the caret. The second variable is the caret's
vertical size. This is necessary because for fonts with different sizes, we need to
create different carets, whose vertical size should be the same with the current
font's height.

Five functions are added to the class, among them, function
CGDIDoc::GetCaretVerSize() provides us a way of obtaining the current caret's
vertical size in class CGDIView; and function CGDIDoc:: GetCaretPosition()

converts the caret index to a position within the client window (The function
returns a POINT type value). It is implemented as follows:

(Code omitted)

The caret position is calculated through using function CDC::GetTextExtent(...),
which will return the vertical and a horizontal size of a text string. We need a DC
to select the current font in order to calculate the text dimension. In the sample,
first a DC that does not belong to any window is created, then the current font is
selected into this DC, and function CString::Left() is called to obtain a sub-string
whose last character is located at the current caret position. The horizontal size
obtained from function CDC:: GetTextExtent(...) for the sub-string is the caret's
horizontal position. Because we have only one line text, the vertical position of
the caret is always 0.

This function may be called within the member functions of CGDIView to retrieve
the current caret position. The other two functions, CGDIDoc::ForwardCaret()
and CGDIDoc::BackwardCaret() can be called to move the caret forward or
backward. They are implemented as follows:

(Code omitted)

Instead of calculating the actual position of the caret, we just increment or
decrement the caret index. The range of this index is from 0 to the total number
of characters (If there are five characters, we have six possible positions for
displaying the caret). If the index goes beyond the limit, we set it back to the
boundary value.

At the end of above two functions, function CGDIDoc::GetCGDIView() is called to
access class CGDIView, then CGDIView::RedrawCaret() is called to update the
caret. This will cause the caret to be displayed in a new position. To access a view
from the document, we need to call function CDocument:: GetFirstViewPosition()
and then call CDocument::GetNextView(...) repeatedly until we get the correct
view. For an SDI application, we need to call this function only once. However,
some applications may have more than one view attached to the document (Like
an MDI application). In this case, we need to use RUNTIME_CLASS macro to
judge if the class is the one we are looking for. In the sample, CGDIDoc::
GetCGDIView() is implemented as a general function, it can also be used in an
MDI application to obtain a specific view from the document. The following is its
implementation:

(Code omitted)

We will implement function CGDIView::RedrawCaret() later.

In the sample, member variable m_nCaretIndex is initialized in the constructor
along with m_szText:

CGDIDoc::CGDIDoc()

{

m_szText="This is just a test string";

m_nCaretIndex=0;

}

Also, when the document is first created or when a new font is selected, we need
to update the value of m_nCaretVerSize, so functions
CGDIDoc::OnNewDocument() and CGDIDoc::OnDialogFont() are updated as
follows:

Old version of CGDIDoc::OnNewDocument():

(Code omitted)

New version of CGDIDoc::OnNewDocument():

(Code omitted)

Old version of CGDIDoc::OnDialogFont():

(Code omitted)

New version of CGDIDoc::OnDialogFont():

(Code omitted)

Function CDC::GetOutputTextMetrics(...) is called to obtain the information of the
selected font. It will return a lot of information about the font such as its height,
average width. This information is stored in a TEXTMETRIC type object, and the
font's height can be retrieved from its tmHeight member.

In the above function, CGDIView::CreateNewCaret(...) is called to create a new
caret. We will implement this function in the next step. As we will see, passing
TRUE to this function will cause the old caret to be destroyed automatically.

In class CGDIView, two new functions are declared (They are called from

CGDIDoc::ForwardCaret(), CGDIDoc::BackwardCaret(),
CGDIDoc::OnDialogFont()):

(Code omitted)

Function CGDIView::RedrawCaret() will erase the current caret and draw it at the
new position. Function CGDIView::CreateNewCaret() will create a new caret and
destroy the old one if necessary. The following code fragment shows their
implementations:

(Code omitted)

In both functions, we retrieve the caret position from the document. Before
moving the caret, we first call function CWnd::HideCaret() to hide the caret. After
setting the new position, we call CWnd::ShowCaret() to show the caret again.
Also, function CWnd::CreateSolidCaret(...) is called to create the caret, since we
pass 0 to its horizontal dimension, the horizontal size of the caret will be set to
the default size. The vertical size is retrieved from the document.

We need to create the caret once the view is created, so the default function
CGDIView:: OnInitialUpdate() is modified as follows:

(Code omitted)

Here we just call function CGDIView::CreateNewCaret(...) and pass a FALSE
value to its parameter because there is no caret needs to be destroyed.

Now we must respond to the events of left arrow and right arrow key strokes. As
we know, when a key is pressed, the system will send WM_KEYDOWN message to
the application, with the key code stored in WPARAM parameter. Under
Windows(, all keys are defined as virtual keys, so there is no need for us to check
the actual code sent from the keyboard. In order to know which key was pressed,
we can examine WPARAM parameter after WM_KEYDOWN message is received.
Here, the virtual key code of the left arrow key and right arrow key are VK_LEFT
and VK_RIGHT respectively.

In the sample, WM_KEYDOWN message handler is added to class CGDIView
through using Class Wizard, and the corresponding function
CGDIView::OnKeyDown(...) is implemented as follows:

(Code omitted)

In this function, WPARAM parameter is mapped to nChar parameter. If the key
stroke is from left arrow key, we call CGDIDoc::BackwardCaret() to move the
caret leftward. If the key stroke is from right arrow key, we call

CGDIDoc::ForwardCaret() to move the caret rightward.

9.6 One Line Text Editor, Step 3: Enabling Input

Sample 9.6\GDI is based on sample 9.5\GDI, it allows the user to input
characters.

New Member Functions

We need to trap keyboard stroking events in order to let the user input
characters. Since our data is stored in the document, we need to first provide
some member functions that can be called from the view to let the new
characters be added. For this purpose, two new functions are declared in class
CGDIDoc:

(Code omitted)

Function CGDIDoc::AddChar(...) allows us to insert characters to the string at the
position indicated by the caret, and function CGDIDoc::DeleteChar(...) allows us
to delete the character before or after the caret. Let's first take a look at the
implementation of function CGDIDoc::AddChar(...):

(Code omitted)

We divide the text string into two parts, the first part is the sub-string before the
caret, and the second part is the sub-string after the caret. The new characters
are inserted between the two sub-strings. Parameter uChar indicates the new
character, and uRepCnt specifies how many characters will be added. After the
character is added, we update the view and move the caret forward.

For function CGDIDoc::DeleteChar(...), it can be used for two situations: one
corresponds to "BACK SPACE" key stroke, the other corresponds to "DELETE" key
stroke. If parameter bBefore is true, the character before the current caret should
be deleted. Otherwise, the character after it needs to be deleted. The following is
the implementation of function CGDIDoc::DeleteChar(...):

(Code omitted)

To delete the character before the current caret, we divide the text into two sub-
strings, delete the last character of the first sub-string, and re-combine them.
Then we update the view, and move caret one character left. When deleting the
character after the caret, we do not need to change the position of the caret.

Message WM_CHAR

Now we need to use the above two member functions. In the sample, message
WM_CHAR is handled to implement keyboard input. The difference between
WM_CHAR and WM_KEYDOWN messages is that WM_CHAR is sent only for
printable characters along with the following five keys: ESCAPE, TAB, BACK
SPACE and ENTER. Message WM_KEYDOWN will be sent for all types of key
strokes.

In the sample, the message handler of WM_CHAR is CGDIView::OnChar(...), it is
implemented as follows in the sample:

(Code omitted)

We neglect the ENTER, TAB and ESCAPE key strokes. For BACK SPACE key
stroke, we delete the character before the current caret. For all other cases, we
insert character at the current caret position.

The DELETE key stroke can not be detected by this message handler, we need to
trap and handle it in function CGDIView::OnKeyDown(...):

(Code omitted)

Of course the printable key strokes will also be detected by this message handler.
However, if we handle character input in this function, we need to first check if
the character is printable. This will make the program a little bit complex.

9.7 One Line Text Editor, Step 4: Caret Moving & Cursor Shape

Sample 9.7\GDI is based on sample 9.6\GDI.

New Functions

Besides moving the caret before or after one character at a time, we sometimes
need to move the caret to the next or the previous word. This will give the user a
faster way of putting the caret at the appropriate position. The method of moving
caret to the next or previous word is almost the same with moving it to the next
or previous character, the only difference between them is how to calculate the
new caret position. Because words are separated by blanks, if we want to move
caret one word leftward or rightward, we can just find the previous or next blank,
calculate the distance, then move the caret to the new position.

Also, we may want to let the user use HOME key and END key to move the caret
to the beginning or the end of the text. Still, almost every text editor supports
changing the caret position with a single mouse clicking.

The following new functions are declared in class CGDIDoc to implement above-

mentioned functionalities:

(Code omitted)

As implied by the function names, CGDIDoc::HomeCaret() will move the caret to
the beginning of the text, CGDIDoc::EndCaret() will move the caret to the end of
the text. The implementation of these two functions is very simple, all we need to
do is setting m_nCaretIndex to a proper value then updating the caret:

(Code omitted)

For other two functions CGDIDoc::ForwardCaretToBlank() and
CGDIDoc::BackwardCaretToBlank(), we need to find out the position of the
nearest blank, and set the value of m_nCaretIndex to it:

(Code omitted)

Within the two functions, a local variable szSub is used to store the sub-string
before or after the caret, and function CString::Find(...) or
CString::ReverseFind(...) is called to find the position of the nearest blank. In
case the blank is not found, we need to move the caret to the beginning or end of
the text. If it is found, we just increment or decrement m_nCaretIndex by an
appropriate value.

On the view side, we need to move the caret when any of the following keys is
pressed together with CTRL: HOME, END, Left and Right ARROW. These
keystroke events can be trapped by handling WM_KEYDOWN message. To detect
if the CTRL key is held down, we can call API function ::GetKeyState(...) to check
the key state.

Function ::GetKeyState(...) can be used to check the current state of any key.
We need to pass the virtual key code (such as VK_CONTROL, VK_SHIFT...) to this
function when making the call. The returned value is a SHORT type integer. The
high order of this value indicates if the key is held down, the lower order indicates
if the key is toggled, which is applicable to keys such as CAPS LOCK, NUM LOCK
or INSERT.

Moving Caret Using Keyboard

Function CGDIView::OnKeyDown(...) is modified as follows to add the new
features to the application:

(Code omitted)

Changes are made to VK_LEFT and VK_RIGHT cases. First we call

::GetKeyState(...) using virtual key code VK_CONTROL and extract the high order
byte from the return value. If it is non-zero, function CGDIDoc::
BackwardCaretToBlank() or CGDIDoc::ForwardCaretToBlank() is called to move
the caret to the nearest blank. Other wise we move the caret one character
leftward or rightward.

In case the key is VK_END or VK_HOME, we call function CGDIDoc::EndCaret() or
CGDIDoc ::HomeCaret() to move the caret to the beginning or end of the text.

Moving Caret Using Mouse

Moving the caret by mouse clicking is a little bit complex. Because all we can
obtain from the message parameter is the mouse's current position, we need to
convert it to a caret index before moving the caret. To do so, we need to go over
all the starting positions of characters, calculate the absolute distance between
each character and the current mouse cursor. The index that results in the
smallest distance will be used as the new caret index. In the sample, function
CGDIDoc::SetCaret(...) is declared for this purpose, which converts geometrical
coordinates to caret index and move the caret to the new place. The following is
its implementation:

(Code omitted)

In order to find out all the possible caret positions, we need to obtain the
dimension of different sub- strings. For example, the caret positions of text
"abcde" can be calculated from the dimensions of following sub-strings: "a", "ab",
"abc", "abcd", "abcde". In the above function, first a DC that does not belong to
any window is created, then the current font is selected into this DC, and function
CDC::GetTextExtent(...) is called to obtain the dimension of each sub-string.
Because we have only one line text, only the horizontal size is meaningful to us.

A loop is implemented to do the comparison. For the nth loop, we create a sub-
string that contains text's first character to nth character, obtain its dimension,
and calculate the distance from the position of the last character of the sub-string
to the current position of mouse cursor. After the loop finishes, we choose the
smallest distance and set m_nCaretIndex to the corresponding caret index.

Cursor Shape

For a text editor, when the mouse is over its editable area, usually the mouse
cursor should be changed to an insertion cursor. This indicates that the user can
input text at this time. This feature can also be implemented in our sample
application.

To set mouse cursor's shape, we need to call API function ::SetCursor(...). The

input parameter to this function is an HCURSOR type handle.

A cursor can be prepared as a resource and then be loaded before being used.
After the cursor is loaded, we can pass its handle to function ::SetCursor(...) to
change the current cursor shape. Besides the cursor prepared by the user, there
also exist some standard cursors that can be loaded directly.

We can call function CWinApp::LoadCursor(...) to load a user-defined cursor, and
call function CWinApp::LoadStandardCursor(...) to load a standard cursor. The
following table lists some of the standard cursors:

(Table omitted)

In the sample, an HCURSOR type variable is declared in class CGDIView, and the
insertion cursor is loaded in function CGDIView::OnInitialUpdate():

class CGDIView : public CScrollView

{

protected:

HCURSOR m_hCur;

......

}

void CGDIView::OnInitialUpdate()

{

......

m_hCur=AfxGetApp()->LoadStandardCursor(IDC_IBEAM);

}

We need to respond to WM_SETCURSOR message in order to change the cursor
shape. By handling this message, we have a chance to customize the default
cursor when it is within the client window of the application. Upon receiving this
message, we can check if the mouse position is over the editable text. If so, we
need to change the cursor by calling API function ::SetCursor(...). In this case,
we need to return a TRUE value and should not call the default message handler.
If the cursor should not be changed, we need to call the default message handler

to let the cursor be set as usual.

To check out if the cursor is over editable text, we need to know the text
dimension all the time. In the previous steps, we already have a variable
CGDIDoc::m_nCaretVerSize that is used to store the vertical size of the caret
(also the text), so here we just need another variable to store the horizontal size
of the text. In the sample, a new variable n_nTextHorSize is declared in class
CGDIDoc for this purpose:

(Code omitted)

Besides the new variable, function CGDIDoc::GetTextHorSize() is also added,
which lets us access the value of CGDIDoc::m_nTextHorSize outside class
CGDIDoc.

We need to set the value of m_nTextHorSize when the document is first initialized
and when the font size is changed (In the following two functions,
m_nTextHorSize is assigned a new value):

(Code omitted)

Message handler of WM_SETCURSOR can be added through using Class Wizard.
The corresponding function CGDIView::OnSetCursor(...) is implemented as
follows:

(Code omitted)

We call ::GetCursorPos(...) and CWnd::ScreenToClient(...) to retrieve the current
cursor position in the client window's coordinate system. Then functions
CGDIDoc::GetTextHorSize() and CGDIDoc:: GetCaretVerSize() are called to
retrieve the dimension of the text. If the mouse cursor is within this rectangle, we
call ::SetCursor(...) to change it to insertion cursor. In this case, we must return
a TRUE value to avoid this message from being further processed (by default the
mouse cursor will be set to arrow cursor).

Handling WM_LBUTTONDOWN to Move Caret

The caret can be moved when the current mouse cursor is an insertion cursor. To
implement this, we need to call function CGDIDoc::SetCaret(...) after receiving
WM_LBUTTONDOWN message. In the sample, this message handler is added
through using Class Wizard, and the corresponding function CGDIView::
OnLButtonDown(...) is implemented as follows:

(Code omitted)

In this function, first we check if the mouse cursor is the insertion cursor. If not,
it means that the mouse is not over the text string. If so, we call function
CGDIDoc::SetCaret(...) and pass current mouse position to it. This will cause the
caret to move to the new position.

9.8 One Line Text Editor, Step 5: Selection

Sample 9.8\GDI is based on sample 9.7\GDI.

Highlighting the Selected Text

The next feature we will add is to let the user select text using mouse. If this is
implemented, it is easy for us to add cut, copy and paste functionalities.

To add the selection feature, we need two new text indices: one indicates the
beginning of the selection, one indicates the end of the selection. In the sample,
two variables along with two functions are added to class CGDIView for this
purpose:

(Code omitted)

Here, variables m_nSelIndexBgn, m_nSelIndexEnd, functions
CGDIDoc::GetSelIndexBgn() and CGDIDoc::GetSelIndexEnd() are added to the
class. Before the selection is made, there may exist two situations: the text is
currently being selected or there is no character being selected. To distiguish
between the two situations, let's define that if any of m_nSelIndexBgn and
m_nselIndexEnd is -1, or their values are the same, it indicates that there is no
text being selected. The two variables are initialized in the constructor as follows:

(Code omitted)

In CGDIView::OnDraw(...), we need to retrieve the values of m_nSelIndexBgn
and m_nSelIndexEnd, swap forground and background colors for the selected
text when outputting text string to the client window. The following is the
modified function CGDIView::OnDraw(...):

(Code omitted)

Two local variables nSelIndexBgn and nSelIndexEnd are declared here, they are
used to store the values of CGDIDoc::m_nSelIndexBgn and
CGDIDoc::m_nSelIndexEnd retrieved from the document. If the value of
CGDIDoc::m_nSelIndexEnd is less than the value of CGDIDoc::m_nSelIndexBgn
(In this case, the selection is made from right to left), we need to swap their
values.

If there is no currently selected text, we simply call CDC::TextOut(...) as usual to
output the plain text. Otherwise we swap the two indices if m_nSelIndexEnd is
less than m_nSelIndexBgn, and set the text alignment by calling function
CDC::SetTextAlign(...) using TA_UPDATECP flag. This will cause the output origin
to be updated to the end of the text after each CDC::TextOut(...) call. If we do
not set this alignment, the coordinates passed to function CDC::TextOut(...)
indicate a position relative to the upper-left corner of the window. With
TA_UPDATECP alignment style, when we call function CDC::TextOut(...), the
coordinates passed to this function will be interpreted as a position relative to the
new origin (which is the end of the text that is output by function
CDC::TextOut(...) last time). This is very useful if we want to output several
segments of strings. In the sample, the old alignment flag is stored in variable
uTextAlign, and is restored after the text is output.

We divide the text string into three segments: the first segment starts from the
beginning of the text and ends at the beginning of the selection. We output this
sub-string using normal text and background colors. The second segment is the
selected portion, before drawing this sub-string we need to swap the text and
background colors so that the selected part will be drawn highlighted. The rest
part is the third sub-string, which is also drawn using the normal text and
background colors. Each time function CDC::TextOut(...) is called, the output
coordinates are specified as (0, 0). If the alignment flag is not set to
TA_UPDATECP, the three segments will all be drawn starting from the same
origin.

Setting Selection Indices

Now we can change the values of CGDIDoc::m_nSelIndexBgn and
CGDIDoc::m_nSelIndexEnd to highlight any portion of the text string. From
user's point of view, this should happen when the mouse is clicked and dragged
over the text. In order to implement this, we need to respond to
WM_LBUTTONDWON, WM_LBUTTONUP and WM_MOUSEMOVE messages.

When left button is pressed down, we need to first reset the values of
CGDIDoc::m_nSelIndexBgn and CGDIDoc::m_nSelIndexEnd to -1, because we
need to unselect any currently highlighted text. Then we can update the value of
CGDIDoc::m_nSelIndexBgn to the current caret index. When mouse moves with
the left button held down, we need to set the value of
CGDIDoc::m_nSelIndexEnd to the current caret index (the caret will move with
the mouse cursor). The same thing needs to be done when mouse's left button is
released. For these purposes, a new function ResetSelection() is declared in class
CGDIDoc, which will be called to reset the selection indices. Also, function
CGDIDoc::SetCaret(...) is modified. The following is a portion of the updated
class CGDIDoc:

(Code omitted)

Function CGDIDoc::ResetSelection() is implemented inline, it just resets the
values of m_nSelIndexBgn and m_nSelIndexEnd to -1, then updates the view
window. The following shows the modified portion of function
CGDIDoc::SetCaret(...):

(Code omitted)

We want to use this function to set both m_nSelIndexBgn and m_nSelIndexEnd,
so that it can be called in response to any of the three mouse messages. If the
value of m_nSelIndexBgn is -1, it means there is no currently selected text. In
this case, we need to update m_nSelIndexBgn (This is the situation that the left
button of the mouse is pressed down). In other cases (If m_nSelIndexBgn is not -
1, the function must be called in response to mouse moving or left button up
event), we need to update the value of m_nSelIndexEnd, then update the client
window.

Handling Mouse Events

First function CGDIView::OnLButtonDown(...) is modified as follows:

Old Version:

(Code omitted)

New Version:

(Code omitted)

The only thing added to this function is resetting the selection indices stored in
the document. Other changes are implemented in the updated function
CGDIView::SetCaret(...).

Two other message handlers for WM_LBUTTONUP and WM_MOUSEMOVE are
added through using Class Wizard. The corresponding functions are
CGDIView::OnLButtonUp(...) and CGDIView::OnMouseMove(...) respectively.

Function CGDIView::OnMouseMove(...) is implemented as follows:

(Code omitted)

We find out if the left button is held down when the mouse is moving by checking
MK_LBUTTON bit of parameter nFlags. If so, function CGDIDoc::SetCaret(...) is
called to set the selection and update the client window. Function
CGDIView::OnLButtonUp(...) is implemented exactly the same except that we

don't need to check the status of left button here:

(Code omitted)

With the above knowledge, it is very easy for us to implement selection by using
left/right ARROW key when SHIFT key is held down. To implement this, we need
to check SHIFT key's status when either left or right ARROW key is pressed. If it
is held, we can update the selection indices and redraw the client window.

9.9 One Line Text Editor, Step 6: Cut, Copy and Paste

Global Memory

Cut, copy and paste are supported almost by every application. They provide a
way to exchange data among different applications. We must use globally shared
data to implement clipboard data transfer. Once we send some data to the
clipboard, it becomes public and can be accessed by all the programs. Any
process in the system can clear the clipboard.

Because of this, we must allocate global memory to store our data in the
clipboard. In Windows(programming, the following API functions can be used to
manage global memory:

HGLOBAL ::GlobalAlloc(UINT uFlags, DWORD dwBytes);

LPVOID ::GlobalLock(HGLOBAL hMem);

HGLOBAL ::GlobalReAlloc(HGLOBAL hMem, DWORD dwBytes, UINT uFlags);

BOOL ::GlobalUnlock(HGLOBAL hMem);

HGLOBAL ::GlobalFree(HGLOBAL hMem);

Global memory is also managed through using handle. Unlike memory allocated
using new key word, function ::GlobalAlloc(...) returns an HGLOBAL type handle
to the allocated memory block if we allocate non-fixed global memory.

Generally, before accessing a non-fixed block of global memory, we must lock it
by calling function ::GlobalLock(...), which will return the address of the memory
block. After reading from or writing to this memory block, we need to call
function ::GlobalUnlock(...) to unlock the memory again. We can free a block of
global memory by calling function ::GlobalFree(...) (We can not free a block of
memory when it is being locked).

We can also allocate fixed global memory, in which case the address of the

memory will be returned by function ::GlobalAlloc(...) directly, and we do not
need lock or unlock operation in order to access the memory.

Parameter nFlags of function ::GlobalAlloc(...) specifies how the memory will be
allocated. There are many possible choices. For example, we can make the
memory movable or fixed, and fill all the buffers with zero. The following is a list
of some commonly used flags:

(Table omitted)

The most commonly used flag is GHND, which specifies that the memory block
should be movable and all buffers should be initialized to zeros. For the clipboard
usage, we also need to specify flag GMEM_SHARE, which will enhance the
performance of clipboard operation.

Actually, in Win32 programming, the memory block allocated by one process can
not be shared by other processes. Flag GMEM_SHARE exists just for the backward
compatibility purpose. For a general application, we can not allocate a block of
memory using flag GMEM_SHARE and share it with other applications. In Win32,
this flag is solely used for clipboard and DDE (see chapter 15) implementation.

The memory size that will be allocated is specified by dwBytes parameter of
function ::GlobalAlloc(...).

Apart from these functions, there is another set of functions whose functionality is
exactly the same, the only difference is that they have a different set of function
names:

HLOCAL ::LocalAlloc(UINT uFlags, UINT uBytes);

LPVOID ::LocalLock(HLOCAL hMem);

HLOCAL ::LocalReAlloc(HLOCAL hMem, UINT uBytes, UINT uFlags);

BOOL ::LocalUnlock(HLOCAL hMem);

HLOCAL ::LocalFree(HLOCAL hMem);

Everything is exactly the same except that all the "Global" keywords are changed
to "Local" here. These functions are originated from the old Win16 programming,
which uses 16-bit memory mode. In that case the memory can be allocated
either from the local heap or global heap. In Win32 programming, there is only
one heap, so two sets of functions become exactly the same. They exist just for
the compatibility purpose. We can use either of them in our program. We can
even call ::GlobalAlloc(...) to allocate memory and release it using

::LocalFree(...).

Clipboard Funcitons

To copy our own data to the clipboard, we need to first prepare the data. The
following lists the necessary steps for allocating memory blcok and fill it with our
data: 1) Allocate enough buffers by calling function ::GlobalAlloc(...). 2) Lock the
memory by calling function ::GlobalLock(...), which will return a pointer that can
be used to access the memory buffers. 3) Fill these buffers with data. 4) Call
::GlobalUnlock(...) to unlock the memory.

We need to use a series of functions in order to put the data to the clipboard: 1)
First we need to call function CWnd::OpenClipboard(...), which will let the
clipboard be owned by our application (Only the window that owns the clipboard
can modify the data contained in the clipboard, any other application is forbidden
to access the clipboard during this period). 2) Before putting any data to the
clipboard, we must call ::EmptyClipboard() to clear any existing data. 3) We can
call ::SetClipboardData() to put new data to the clipboard. 4) Finally we need to
call ::CloseClipboard() to close the clipboard, this will let the clipboard be
accessible to other windows.

When calling function ::SetClipboardData(...), besides passing the handle of the
global memory, we also need to specify the data format. There are many
standard clipboard data formats such as CF_TEXT, CF_DIB, which represent text
data and bitmap data respectively. We can also define our own data format by
calling function ::RegisterClipboardFormat(...).

To copy data from the clipboard, we need to open the clipboard first, then call
function ::GetClipboardData(), which will return a global memory handle. With
this handle, we can call ::GlobalLock(...) to lock the memory, copy the data from
the global memory to our own buffers, call ::GlobalUnlock(...) to unlock the
memory, and close the clipboard. We can not free the global memory obtained
from the clipboard because after the clipboard is closed, some other applications
may also want to access it.

Deleting Selected Text

Sample 9.9\GDI is based on sample 9.8\GDI, it allows the user to cut or copy the
selected text to the clipboard, and paste the data from clipboard.

When we cut data to the clipboard, we also need to delete the selected text. So
first a new function DeleteSelection() is declared in class CGDIDoc, it can be
called to delete the currently selected text:

class CGDIDoc : public CDocument

{

......

public:

......

BOOL DeleteSelection();

......

}

Function CGDIDoc::DeleteSelection() is implemented as follows:

(Code omitted)

When there is no currently selected text, the function does nothing. Otherwise we
proceed to delete the selected text.

Because the ending selection index may be less than the beginning selection
index, first we set the value of local variable nSel to the smaller selection index,
and set the number of selected characters to another local variable nNum. Then
the unselected text is combined together, and the caret index is adjusted. Next
the caret and the client window are updated. Finally, both selection indices are
set to -1, this indicates that currently there is no text being selected.

We can call this function when DELETE key is pressed to delete the selected text,
also we can call it when the selected text is being cut to the clipboard. In the
sample, function CGDIDoc::DeleteChar() is modified as follows:

(Code omitted)

Since this member function may be called when either BACK SPACE or DELETE
key is pressed, we need to delete the selected text in both cases. If deleting the
selected text is successful, the function will return. Otherwise it means there is no
currently selected text, so we go on to delete a single character.

Message Handlers for Cut, Copy Paste Commands

In the sample, both WM_COMMAND and UPDATE_COMMAND_UI message
hanlders are added for command ID_EDIT_CUT, ID_EDIT_COPY and
ID_EDIT_PASTE in class CGDIDoc. We need to enable commands Edit | Copy and

Edit | Cut if there is selected text. So functions CGDIDoc::OnUpdateEditCopy(...)
and CGDIDoc::OnUpdateEditCut(...) are implemented as follows:

(Code omitted)

Two functions are implemented exactly the same. For function
CGDIDoc::OnUpdateEditPaste(...), we need to check if there is data available in
the clipboard, if so, the command will be enabled. This checking can be
implemented by calling function ::IsClipboardFormatAvailable(...) with
appropriate data format passed to it. The function will return FALSE if there is no
data present in the clipboard for the specified data format. The following is the
implementation of funcition CGDIDoc::OnUpdateEditPaste(...):

(Code omitted)

Command Edit | Copy is implemented as follows:

(Code omitted)

First, we assign the smaller of the two selection indicies to variable nSel, and the
number of selected characters to variable nNum. Then we copy the selected text
to a CString type variable szStr. Next, we allocate a memory block, lock it, copy
the string from szStr to the new buffers. Then we unlock the memory, open the
clipboard, clear it, and copy the data to the clipboard. Finally we close the
clipboard.

The implmentation of Edit | Cut command is almost the same except that we
must delete the selected text after copying the data to the clipboard. So function
CGDIDoc::OnEditCut() is implemented as follows:

(Code omitted)

For Edit | Paste command, everything is the reverse. We need to open the
clipboard, obtain data from the clipboard, lock the global memory, copy the data
to local buffers, unlock the global memory, and insert the new string to the text
at the current caret position. The following is the implementation of this
command:

(Code omitted)

Now the application can exchange data with another application that supports
clipboard.

9.10 One Line Text Editor, Step 7: Getting Rid of Flickering

The editor is almost finished except for one annoying feature: every time the user
inputs a character, makes selection or moves the caret, the text will flicker. This
is because whenever the text is being updated, we call function
CDocument::OnUpdateAllViews(...) to cause the whose view window to be
updated. By default, before the client window is redrawn, it will be erased using
white color. This is the cause of flickering. To get rid of it, we need to update only
the area that has changed (instead of updating the whole window).

Function CDocument::UpdateAllViews(...)

Function CDocument::UpdateAllViews(...) has three parameters, two of which
have default values:

void CDocument::UpdateAllViews(CView *pSender, LPARAM lHint=0L, CObject
*pHint=NULL);

By default, the update message will be sent to view, this will cause function
CView::OnUpdate(...) to be called:

void CView::OnUpdate(CView *pSender, LPARAM lHint, CObject *pHint);

All parameters passed to CDocument::UpdateAllViews(...) will be passed to this
function. This provides us a way to know what part of the client window needs to
be updated. The updating hint can be passed through either parameter lHint or
pHint.

By default, CView::OnUpdate(...) will update the whole client area. If we want
only a portion of the client window to be updated, we need to bypass the default
implementation. Within the overridden funciton, we can use the hint to form a
rectangle indicating the area needs to be updated, and use it to call function
CWnd::InvalidateRect(...).

Function CWnd::InvalidateRect(...) will cause only the specified rectangular area
to be updated.

Defining Hints

Our next task is to divide the updating events into different categories and
calculate the rectangle for each situation. The following is a list of situations when
only a portion of the client window needs to be updated:

(Table omitted)

The last two situations are a little complicated. When the user makes selections,
the newly selected area may be smaller or larger than the old selected area. In

either case, we only need to update the changed area to avoid flickering (Figure 9-
5).

Because of this, we need to add new variables to remember the old selection
indices. In the sample, two new variables and some functions are declared in
class CGDIDoc as follows:

(Code omitted)

Variables m_nSelIndexBgnOld and m_nSelIndexEndOld are used to remember
the old selection indices, functions GetSelIndexBgnOld() and
GetSelIndexEndOld() are used to obtain their values outside class CGDIDoc.
Because we also need to know the value of m_nCaretIndex when updating the
client window, another function GetCaretIndex() is also added for retrieving its
value.

The value of m_nSelIndexEndOld is initialized in the constructor:

CGDIDoc::CGDIDoc()

{

......

m_nSelIndexEndOld=-1;

}

In the sample, some macros are defined as follows to indicate different updating
situations when function CDocument::UpdateAllViews(...) is called:

#define HINT_DELCHAR_AFTER 100

#define HINT_DELCHAR_BEFORE 101

#define HINT_DELETE_SELECTION 102

#define HINT_PASTE 103

#define HINT_SELECTION 104

#define HINT_UNSELECTION 105

#define HINT_INPUT 106

Calling Function CDocument::UpdateAllViews(...)

We must modify all the function calls to CDocument::UpdateAllViews(...). The
following shows the modifications made to function CGDIDoc::SetCaret(...):

Old Version:

(Code omitted)

New Version:

(Code omitted)

In this function, the value of m_nSelIndexEnd is first assigned to
m_nSelIndexEndOld before it is updated. Flag HINT_SELECTION will cause the
difference between the newly selected area and the old one to be updated. The
area can be calculated from the four selection indices.

The following shows the modifications made to function CGDIDoc::AddChar(...):

Old Version:

(Code omitted)

New Version:

(Code omitted)

Flag HINT_INPUT will cause all the characters after the caret to be updated.

The following shows the modifications made to funciton
CGDIDoc::DeleteChar(...):

Old Version:

(Code omitted)

New Version:

(Code omitted)

Flag HINT_DELCHAR_AFTER will cause all the characters after the caret to be
updated, and HINT_DELCHAR_BEFORE will cause the character before the caret
along with all the characters after the caret to be updated.

The following shows the modifications made to function
CGDIDoc::DeleteSelection():

Old Version:

(Code omitted)

New Version:

(Code omitted)

Flag HINT_DELETE_SELECTON will cause the selected text and the characters
after the selection to be updated.

The following shows the modifications made to function CGDIDoc::OnEditPaste():

Old Version:

(Code omitted)

New Version:

(Code omitted)

Flag HINT_PASTE will cause all the characters after the caret to be updated.

The following shows the modifications made to inline function
CGDIDoc::ResetSelection():

Old Version:

(Code omitted)

New Version:

(Code omitted)

Flag HINT_UNSELECTION will cause only the selected area to be updated.
Because both m_nSelIndexBgn and m_nSelIndexEnd should be set to -1 to
indicate that there is no selected text anymore, we need to use two other
variables (m_nSelIndexBgnOld and m_nSelIndexEndOld) to store the old
selection indices.

Overriding CView::OnUpdate(...)

On the view side, function OnUpdate(...) can be added through using Class
Wizard. In this function, we need to know the current values of
CGDIDoc::m_nSelIndexBgn, CGDIDoc::m_nSelIndexEnd, CGDIDoc::
m_nSelIndexBgnOld, CGDIDoc::m_nSelIndexEndOld and
CGDIDoc::m_nCaretIndex in order to decide which part of the text should be
updated. We also need to obtain the current font and text string in order to
calculate the actual rectangle for implementing update.

If parameter lHint is NULL, it means that all client area needs to be updated. In
this case, we call the default implementation of this function and return. The
following is a portion of funciton CGDIView:: OnUpdate(...) which implements
this:

(Code omitted)

If parameter lHint is non-null, we need to obtain the current font, text string and
selection indices from the document, and calculate the area that should be
updated. Here variable rect stores a rectangle that covers all of the text (within
the window).

In the case when hint is one of HINT_DELCHAR_AFTER, HINT_PASTE and
HINT_INPUT, we need to update all the characters after the caret:

(Code omitted)

The caret index is retrieved from the document and stored to variable nIndex.
Then the sub-string before the caret is extracted and stored to variable szText.
Its dimension is calculated by calling function CDC::GetTextExtent(...), and the
left border of rect is changed so that it covers only the characters after the caret.
Finally, function CWnd::InvalidateRect(...) is called and rect is passed to one of
its parameters.

If the hint is HINT_DELCHAR_BEFORE, we need to update the character before
the caret and all the characters after the caret:

(Code omitted)

If the hint is HINT_DELETE_SELECTION, we need to update the selected text as
well as the characters after the selection:

(Code omitted)

If the hint is HINT_UNSELECTION, we need to update only the selected text.

Since both CGDIDoc:: m_nSelIndexBgn and CGDIDoc::m_nSelIndexEnd are -1
now, we must use CGDIDoc::m_nSelIndexBgnOld and
CGDIDoc::m_nSelIndexEndOld to calculate the rectangle:

(Code omitted)

If the hint is HINT_SELECTION, we must check if CGDIDoc::nSelIndexEndOld is -
1 or not. If it is -1, it means that the area needed to be updated is between
CGDIDoc::nSelIndexBgn and CGDIDoc::nSelIndexEnd; if not, the area needed to
be updated is between CGDIDoc::nSelIndexEnd and CGDIDoc::nSelIndexEndOld
(See Figure 9-6):

(Code omitted)

If we pass FALSE to the second parameter of CWnd::InvalidateRect(...), the
client area will be updated without being erased. This can further reduce
flickering.

Summary:

1) Font can be created from structure LOGFONT. We need to provide the
following information when creating a special font: face name, font size (height
and width). To add special effects to the text, we need to know if the font is
bolded, italic, underlined or strikeout. Also, we can change character's orientation
by setting font's escapement.

2) All the fonts contained in the system can be enumerated by calling function
::EnumFontFamilies(...). We need to provide a callback function to receive
information for each type of font.

3) Function CDC::ExtTextOut(...) can output a text string within a specified
rectangle, the area outside the rectangle will not be affected no matter what the
text size is. When we call this function, all the area not covered by the text within
the rectangle is treated as the background of the text.

4) To implement caret within a window, first we need to create the caret by using
one of the following functions: CWnd::CreateSolidCaret(...),
CWnd::CreateGrayCaret(...), CWnd::CreateCaret(...). Then we can show or hide
the caret by calling either function CWnd::ShowCaret() or CWnd::HideCaret().

5) Keyboard input events can be trapped by handling WM_KEYDOWN or
WM_CHAR message.

6) Mouse cursor can be changed by handling message WM_SETCURSOR. We can
load a user designed cursor resource by calling function

CWinApp::LoadCursor(...). We can also load a standard cursor by calling function
CWinApp::LoadStandardCursor(...).

7) If we call function CDC::SetTextAlign(...) using TA_UPDATECP flag, the
window origin will be updated to the end of the text each time funciton
CDC::TextOut(...) is called.

8) To use global memory, we need to call ::GlobalAlloc(...) to allocate the buffers,
call ::GlobalLock(...) to lock the memory before accessing it, call
::GlobalUnlock(...) to stop accessing the memory, and call ::GlobalFree(...) to
release the memory.

9) To access the clipboard, we need to call CWnd::OpenClipboard(...) to open the
clipboard, call ::EmptyClipboard() to clear any existing data, call
::SetClipboardData() to put data to the clipboard, and call ::CloseClipboard() to
close the clipboard. To get data from the clipboard, after opening it, we need to
call function ::GetClipboardData() to obtain a global memory handle, which can
be used for accessing the data contained in the clipboard.

10) We can pass hints to function CDocument::UpdateAllViews(...) to indicate
different updating situations. The hint can be received in function
CView::OnUpdate(...). If we want only a portion of the client window to be
updated, we can specify the area with a CRect type variable and use it to call
function CWnd::InvalidateRect(...) instead of default function
CWnd::Invalidate(...).

BACK TO INDEX

Chapter 10 Bitmap
From this chapter we are going to deal with another GDI object ¾ bitmap, which
is a very complex issue in Windows(programming. There are many topics on
how to use bitmaps, how to avoid color distortion, how obtain palette from
bitmap, how convert from one bitmap format to another, and how to manipulate
image pixels.

Samples in this chapter are specially designed to work on 256-color palette
device. To customize them for non-palette devices, we can just eleminate logical
palette creation and realization procedure.

10.1 BitBlt and StretchBlt

DIB & DDB

There are two type of bitmaps under Windows(: device independent bitmap
(DIB) and device dependent bitmap (DDB). As we know, each computer may be
equipped with a different type of device, therefore may use different format to
store bitmap images in the hardware. Before displaying any image on the
screen, we need to convert the image data to a format that is understandable by
the hardware device, otherwise the image could not be displayed correctly. This
format is called device dependent bitmap format (DDB), because it is hardware
dependent. However, using DDB format will cause incompatibility between
different systems, because one DDB format may not be understandable by
another device. To solve this problem, under Windows(, a device independent
bitmap format (DIB format) is supported by all device drivers. When we call the
standard function to load a device independent bitmap, the device driver will
convert it to DDB that is understandable by the device.

Drawing DDB

There are several ways to include bitmap image in an application. The simplest
one is to treat it as bitmap resource. To load the image, we can call function
CBitmap::LoadBitmap(...) and pass the bitmap resource ID to it.

After the bitmap is loaded, we need to output it to the target device (such as
screen). The procedure of outputting a bitmap to a target device is different from
using a pen or brush to draw a line or fill a rectangle: we cannot select bitmap
into the target DC and draw the bitmap directly. Instead, we must create a
compatible memory DC and select the bitmap into it, then copy the bitmap from
memory DC to the target DC.

The functions that can be used to copy a bitmap between two DCs are
CDC::BitBlt(...) and CDC::StretchBlt(...). The former function allows us to copy
the bitmap in 1:1 ratio, and the latter one allows us to enlarge or reduce the
dimension of the original image. Lets first take a look at the first member
function:

BOOL CDC::BitBlt

(

int x, int y, int nWidth, int nHeight,

CDC *pSrcDC,

int xSrc, int ySrc,

DWORD dwRop

);

There are eight parameters, first four of them specify the origin and size of the
target bitmap that will be drawn. Here x and y can be any position in the target
device, also, nWidth and nHeight can be less than the dimension of source image
(In this case, only a portion of the source image will be drawn). The fifth
parameter is a pointer to the source DC. The seventh and eighth parameters
specify the origin of the source bitmap. Here, we can select any position in the
source bitmap as origin. The last parameter specifes the bitmap drawing mode.
We can draw a bitmap using many modes, for example, we can copy the original
bitmap to the target, turn the output black or white, do bit-wise OR, AND or XOR
operation between source bitmap and target bitmap.

Creating Memory DC

A memory DC used for copying bitmap image must be compatible with the target
DC. We can call function CDC::CreateCompatibleDC(...) to create this type of
DC. The following is the format of this function:

BOOL CDC::CreateCompatibleDC(CDC* pDC);

The only parameter to this function (pDC) must be a pointer to the target DC.

Retrieving the Dimension of Bitmap Image

We see that in order to copy the bitmap from one DC to another, we need to
know the dimension of the bitmap. The bitmap size, along with other
information, can be retrieved by calling function CBitmap::GetBitmap(...). If we
pass a BITMAP type pointer to this function, the object will be filled with the
bitmap information. The bitmap dimension is stored in members bmWidth and
bmHeight of structure BITMAP.

Sample 10.1\GDI

Sample 10.1-1\GDI demonstrates how to use function CDC::BitBlt(...). It is a
standard SDI application generated by Application Wizard, and its view is based
on class CScrollView. In the sample, first a bitmap resource is added to the
application, whose ID is IDB_BITMAP.

A CBitmap type variable is declared in class CGDIDoc, it will be used to load this
bitmap:

(Code omitted)

Variable m_bmpDraw will be used to load the bitmap, and function GetBitmap()
will be used to access it outside class CGDIDoc. Bitmap IDB_BITMAP is loaded in
the constructor of class CGDIDoc:

(Code omitted)

In function CGDIView::OnInitialUpdate(), we need to use bitmap dimension to
set the total window scroll sizes so that if the window is not big enough, we can
scroll the image to see the covered portion:

(Code omitted)

The bitmap pointer is obtained from the document. By calling function
CBitmap::GetBitmap(...), all the bitmap information (including its dimension) is
obtained and stored in variable bm. Then the scroll sizes are set using bitmap
dimension. By doing this, the scroll bars will pop up automatically if the
dimension of the client window becomes smaller than the dimension of the
bitmap.

Function CGDIView::OnDraw(...) is implemented as follows:

(Code omitted)

First we call CDC::CreateCompatibleDC(...) to create a compatible memory DC,
then use it to select the bitmap obtained from the document. Like other GDI
objects, after using a bitmap, we need to select it out of the DC. For this
purpose, a local variable pBmpOld is used to store the returned address when we
call CDC::SelectObject(...) to select the bitmap (pBmp) into memory DC. After
the bitmap is drawn, we call this function again to select pBmpOld, this will
select bitmap stored by pBmp out of the DC.

In the next step function CBitmap::GetBitmap(...) is called to retrieve all the
bitmap information into variable bm, whose bmHeight and bmWidth members
(represent the dimension of bitmap) will be used for copying the bitmap. Then
we call CDC::BitBlt(...) to copy the bitmap from the memory DC to the target
DC. The origin of the target bitmap is specified at (0, 0), also, the source bitmap
and target bitmap have the same size.

Sample 10.1-2\GDI

Sample 10.1-2\GDI demonstrates how to use function CDC::StretchBlt(...) to
output the bitmap image. It is based on sample 10.1-1\GDI. In this sample, the
image is enlarged to twice of its original size and output to the client window.

Because the target image has a bigger dimension now, we need to adjust the
scroll sizes. First function CGDIView::OnInitialUpdate() is modified as follows for
this purpose:

(Code omitted)

The scroll sizes are set to twice of the bitmap size.

Function CDC::StretchBlt(...) has 10 parameters:

(Code omitted)

There are two extra parameters nSrcWidth and nSrcHeight here (compared to
function CDC::BitBlt()), which specify the extent of original bitmap that will be
output to the target. Obviously, nWidth and nSrcWidth determine the horizontal
ratio of the output bitmap (relative to source bitmap). Likewise, nHeight and
nSrcHeight determine the vertical ratio.

In the sample, both horizontal and vertical ratios are set to 200%, and function
CGDIView::OnDraw(...) is modified as follows:

(Code omitted)

With the above modifications, we will have an enlarged bitmap image in the
client window.

10.2 Extracting Palette from DIB

If we execute the previous two samples on a palette device, we may experience
color distortion (Please open file 10.1-1\bitmap.bmp using a standard graphic
editor and compare the results). This is because we didn't implement logic
palette for displaying the bitmap, so the the colors of the bitmap pixels are
mapped to the nearest colors available in the system. To avoid color distortion,
we must implement logical palette before drawing the bitmap.

Another problem is that when we call function CBitmap::LoadBitmap(...) to load
the bitmap resource, it will create a device dependent bitmap from the data
stored in the resource. So after the the bitmap is loaded, it becomes DDB, which
could only be understood by the device. To extract palette information from the
bitmap data, we must use DIB format.

To avoid color distortion, we must implement logical palette for device
dependent bitmap before it is drawn to the target device. Because function
CBitmap::LoadBitmap(...) does not extract palette and the bitmap data stored in
the resource is in the format of DIB, we must convert the bitmap to DDB and
extract palette information from it by ourselves.

DIB Format

A DIB comprises three parts: bitmap information header, color table, and bitmap
bit values. The bitmap information header stores the information about the
bitmap such as its width, height, bit count per pixel, etc. The color table contains
an array of RGB colors, it can be referenced by the color indices. The bitmap bit
values represent bitmap pattern by specifying an index into the color table for
every pixel. The color table can also be empty, in which case the bitmap bit vlues
must be actual R, G, B combinations.

There are several type of DIBs: monocrome, 16 colors, 256 colors and 24 bit.
The first three formats use color table and color indices to form a bitmap. The
last format does not have a color table and all the pixels are represented by R,
G, B combinations.

The following is the format of bitmap information header:

typedef struct tagBITMAPINFOHEADER{

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

It has 11 members, the most important ones are biSize, biWidth, biHeight,
biBitCount and biSizeImage.

Member biSize specifies the length of this structure, which can be specified by
sizeof(BITMAPINFORHEADER). Members biWidth and biHeight specify the
dimension of the bitmap image. Member biBitCount specifies how many bits are
used to represent one pixel (Bit count per pixel). This factor determines the total
number of colors that can be used by the bitmap and also, the size of the color
table. For example, if this member is 1, the bitmap can use only two colors. In
this case, the size of color table is 2. If it is 4, the bitmap can use up to 16 colors
and the size of the color table is 16. The possible values of this member are 1, 4,
8, 16, 24, and 32. Member biSizeImage specifies the total number of bytes that
must be allocated for storing image data. This is a very important member,
because we must know its value before allocating memory.

An image is composed of multiple raster lines, each raster line is made up of an
array of pixels. To speed up image loading, each raster line must use a multiple
of four-byte buffers (This means if we have a 2-color (monochrom) 1(1 bitmap,
we need four bytes instead of one byte to store only one pixel). Because of this,
the value of biSizeImage can not be simply calculated by the following fomulae:

biHeight*biWidth*biBitCount/8

We will discuss how to calculate this value later.

For bitmaps under Windows(, member biPlanes is always set to 1. If the bitmap
is not compressed, member biCompress should be set to BI_RGB.

The next part of the DIB data is color table, which comprises an array of
RGBQUAD objects. The bitmap information header and color table together form
a bitmap header, which can be described by a BITMAPINFO structure:

typedef struct tagBITMAPINFO {

BITMAPINFOHEADER bmiHeader;

RGBQUAD bmiColors[1];

} BITMAPINFO;

DIB Example

Following the bitmap header are bitmap bit values. Image data is stored in the
memory one pixel after another from left to right, and vertically from the bottom
to the top. The following is an example of 3(4 image:

(Table omitted)

This image has only two colors: black and white. If we store it using
monochrome DIB format (2 colors), we need only 3 bits to store one raster line.
For 16-color DIB format, we need 12 bits to store one line. Since each raster line
must use multiple of four-byte buffers (32 bits), if one raster line can not use up
all the bits, the rest will simply be left unused.

The following table compares four different types of DIB formats by listing the
following information: the necessary bits needed, the actual bits used, and
number of bits wasted by one raster line:

(Table omitted)

We can define a macro that allows us to calculate the number of bytes needed
for each raster line for different bitmap formats:

#define WIDTHBYTES(bits) ((((bits)+31)/32)*4)

Here bits represents the number of bits that are needed for one raster line, it can
be obtained from BITMAPINFORHEADER by doing the following calculation:

biWidth(biBitCount

Now we know how to calculate the value of biSizeImage from other members of
structure BITMAPINFOHEADER:

WIDTHBYTES(biWidth*biBitCount)*biHeight

The following is the image data for the above DIB example, assume all unused
bits are set to 0:

2 color bitmap (assuming in the color table, index to white color = 0, index to
black color = 1):

C0 00 00 00

40 00 00 00

C0 00 00 00

40 00 00 00

4 color bitmap (assuming in the color table, index to white color = 0, index to
black color = 15):

F0 00 00 00

0F 00 00 00

F0 F0 00 00

0F 00 00 00

8 color bitmap (assuming in the color table, index to white color = 0, index to
black color = 255):

FF 00 FF 00

00 FF 00 00

FF 00 FF 00

00 FF 00 00

24 bit color bitmap:

00 00 00 FF FF FF 00 00 00 00 00

FF FF FF 00 00 00 FF FF FF 00 00

00 00 00 FF FF FF 00 00 00 00 00

FF FF FF 00 00 00 FF FF FF 00 00

The bitmap resource is stored exactly in the format mentioned above. To avoid
color distortion, we need to extract the color table contained in the DIB to create
logic palette, and convert DIB to DDB before drawing it.

Creating DDB from DIB

To create a DDB from DIB data, we need to call function ::CreateDIBitmap(...),
which has the following format:

HBITMAP ::CreateDIBitmap

(

HDC hdc,

CONST BITMAPINFOHEADER *lpbmih, DWORD fdwInit,

CONST VOID *lpbInit, CONST BITMAPINFO *lpbmi, UINT fuUsage

);

The first parameter of this function is a handle to target DC. Because DDB is
device dependent, we must know the DC information in order to create the
bitmap. The second parameter is a pointer to BITMAPINFORHEADER type object,
it contains bitmap information. The third parameter is a flag, if we set it to
CBM_INIT, the bitmap will be initialized with the data pointed by lpbInit and
lpbmi; if this flag is 0, a blank bitmap will be created. The final parameter
specifies how to use color table. If the color table is contained in the bitmap
header, we can set its value to DIB_RGB_COLORS.

Loading Resource

To access data stored in the resource, we need to call the following three
funcitons:

HRSRC ::FindResource(HMODULE hModule, LPCTSTR lpName, LPCTSTR lpType);

HGLOBAL ::LoadResource(HMODULE hModule, HRSRC hResInfo);

LPVOID ::LockResource(HGLOBAL hResData);

The first function will find the specified resource and return a resource handle.
When calling this function, we need to provide module handle (which can be
obtained by calling function AfxGetResourceHandle()), the resource ID, and the
resource type. The second function loads the resource found by the first
function. When calling this function, we need to provide the module handle,
along with the resource handle returned from the first function. The third
function locks the resource. By doing this, we can access the data contained in it.
The input parameter to this function must be the global handle obtained from the
second function.

Sample

Sample 10.2\GDI demonstrates how to extract color table from DIB and convert
it to DDB. It is based on sample 10.1-2\GDI.

Because we need to implement logical palette, first a variable and a function are
added to class CGDIDoc:

(Code omitted)

Variable m_palDraw is added for creating logical palette and function
GetPalette() is used to access it outside class CGDIDoc.

In class CGDIView, some new variables are added for bitmap drawing:

(Code omitted)

Variable m_dcMem will be used to implement memory DC at the initialization
stage of the client window. It will be used later for drawing bitmap. By
implementing memory DC this way, we don't have to create it every time. Also,
we will select the bitmap and palette into the memory DC after they are
avialabe, and selet them out of the DC when the window is being destroyed. For
this purpose, two pointers m_pPalMemOld and m_pBmpMemOld are declared,
they will be used to select the palette and bitmap out of DC. Variable m_bmInfo
is used to store the information of bitmap.

The best place to create bitmap and palette is in CGDIView::OnInitialUpdate().
First, we must locate and load the bitmap resource:

(Code omitted)

We call funcitons ::FindResource(...) and ::LoadResource(...) to load the bitmap
resource. Function ::FindResource(...) will return a handle to the specified
resource block, which can be passed to ::LoadResource(...) for loading the
resource. This function returns a global memory handle. We can call
::LockResource(...) to lock the resource. This function will return an address that
can be used to access the bitmap data. In the sample, we use pointer lpBi to
store this address.

Next, we must calculate the size of color table and allocate enough memory for
creating logical palette. The color table size can be calculated from "bit count per
pixel" information of the bitmap as follows:

(Code omitted)

The color table size is stored in variable nSizeCT. Next, the logical palette is
created from the color table stored in the DIB data:

(Code omitted)

The color table is obtained from member bmiColors of structure BITMAPINFO
(pointed by lpBi). Since the palette is stored in the document, we first call
CGDIDoc::GetPalette() to obtain the address of the palette
(CGDIDoc::m_palDraw), then call CPalette::CreatePalette(...) to create the
palette. After this we select the palette into the client DC, and call
CDC::RealizePalette() to let the logical palette be mapped to the system palette.

Then, we create the DDB from DIB data:

(Code omitted)

Function ::CreateDIBitmap(...) returns an HBITMAP type handle, which must be
associated with a CBitmap type varible by calling function CBitmap::Attach(...).

The rest part of this funciton fills variable CGDIView::m_bmInfo with bitmap
information, sets the scroll sizes, create the memory DC, select bitmap and
palette into it, then free the bitmap resource loaded before:

(Code omitted)

Because the bitmap and the palette are selected into the memory DC here, we
must select them out before application exits. The best place to do this is in
WM_DESTROY message handler. In the sample, a WM_DESTROY message
handler is added to class CGDIView through using Class Wizard, and the
corresponding function CGDIView::OnDestroy() is implemented as follows:

(Code omitted)

We must modify function CGDIView::OnDraw(...). Since everything is prepared
at the initialization stage (the memory DC, the palette, the bitmap), the only
thing we need to do in this function is calling CDC:: StrethBlt(...) or
CDC::BitBlt(...) to copy the bitmap from memory DC to target DC:

(Code omitted)

With the above implementations, the bitmap will become more vivid.

10.3 Loading DIB from File

Now that we understand how to convert a DIB to DDB, it is fairly easy for us to
load a device independent bitmap into memory and convert it to DDB. Sample
10.3\GDI demonstrates how to read DIB file and display the image in the clinet
window. It is based on sample 10.2\GDI.

File Format

All bitmap images stored on the hard disk are in the format of DIB, and therefore
can be any of the following formats: monochrome, 16 color, 256 color and 24-
bit. The difference between DIB stored in a file and DIB stored as a resource is
that there is an extra bitmap file header for DIB stored in file. This header has
the following format:

typedef struct tagBITMAPFILEHEADER {

WORD bfType;

DWORD bfSize;

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

This header specifies three factors: the file type, the bitmap file size, and the
offset specifying where the DIB data really starts. So a real DIB file has the
following format:

BITMAPFILEHEADER

BITMAPINFOHEADER

Color Table

Bitmap Bits

Member bfType must be set to 'BM', which indicates that the file is a bitmap file.
Member bfSize specifies the whole length of the bitmap file, which is counted
from the beginning of the file to its end. Member bfOffBits specifies the offset
from BITMAPFILEHEADER to bitmap bits, which should be the size of
BITMAPINFOHEADER plus the size of color table.

Supporting File Type

Using SDI or MDI model, it is easy to support certain type of files in "Open" or
"Save As" common dialog box (activated when the user executes File | Open or
File | Save As command). This feature can be added by changing
IDR_MAINFRAME string resource. By default, this string resource contains the
following sub-strings (Sub-strings are separated by '\n'):

GDI\n\nGDI\n\n\nGDI.Document\nGDI Document

The meaning of each sub string is listed in the following table:

(Table omitted)

By default, no special file types are supported. If we want the file dialog box to
contain certain filters, we need to change the fourth and fifth items of the above
string. In the sample, string resource IDR_MAFRAME is changed to the following:

GDI\n\nGDI\nBitmap Files(*.bmp)\n.bmp\nGDI.Document\nGDI Document

The fourth item (Bitmap Files(*.bmp)) is a descriptive name for bitmap files, and
the fifth item (.bmp) is the filter.

Loading DIB through Serialization

Since we are going to store data read from the file in globally allocated memory,
first we must add an HGLOBAL type varible (along with a member function) to
class CGDIDoc. Because DIB data will be changed to DDB data before drawing, a
CBitmap type variable and its associated funciton are also declared in class
CGDIDoc:

(Code omitted)

Variable m_hDIB is initialized in the constructor:

CGDIDoc::CGDIDoc()

{

m_hDIB=NULL;

}

We will allocate global memory each time a new bitmap file is opened. So when
the application exits, we need to check variable m_hDIB to see if the memory
has been allocated. If so, we need to release it:

(Code omitted)

We need to modify function CGDIDoc::Serialize(...) to load data from DIB file.
First, when a file is being opened, variable m_hDIB may be currently in use. In
this case, we need to release the global memory:

(Code omitted)

Reading data from a DIB file needs the following steps:

1) Read bitmap file header.

2) Verify that the the file format is correct.

3) From the bitmap file header, calculate the total memory needed, then allocate
enough buffers.

4) Read the DIB data into the allocated buffers.

We can call CArchive::Read(...) to read bytes from the file into the memory. In
the sample, first bitmap file header (data contained in structure
BITMAPFILEHEADER) is read:

(Code omitted)

Then the file type is checked. If it is DIB format, global memory is allocated,
which will be used to store DIB data:

(Code omitted)

Next, the DIB data is read into the global memory:

(Code omitted)

This completes reading the bitmap file. The DIB data is stored in m_hDIB now.

Creating DDB

On the view side, we need to display the bitmap stored in memory (whose
handle is m_hDIB) instead of the bitmap stored as resource. So we need to
modify function CGDIView::OnInitialUpdate(), which will be called whenever a
new file is opened successfully. First, instead of obtaining data from the
resource, function CGDIDoc::GetHDib() is called to get the handle of DIB data:

(Code omitted)

Remember in the previous sample, after the DDB and palette are created, we
will select them into the memory DC so that the image can be drawn directly
later. In this sample, when a new DIB file is opened, there may be a bitmap
(also a palette) that is being currently selected by the memory DC. If so, we
need to select it out of the memory DC, then lock the global memory and obtain
its address that can be used to access the DIB (In order to create DDB, we need
the information contained in the DIB):

(Code omitted)

The rest portion of this function calculates the size of the color table, creates the
palette (If there is an existing palette, delete it first), and creates DDB from DIB
data. Then the newly created bitmap and palette are selected into the memory
DC, and m_bmInfo is updated with the new bitmap information. Finally, the
global memory is unlocked.

Other functions remain unchanged. With the above implementation, we can open
any DIB file with our application and display the image in the client window.

10.4 Saving DDB to File

We cannot save DDB data directly to a file. Saving bitmap to a file is a reverse
procedure of loading it from the disk: we must first convert the DDB back to DIB
then write the data to file.

Converting DDB to DIB

To convert a DDB to DIB, we need to call API function ::GetDIBits(...) to receive
the bitmap data in DIB format. When calling this function, we must allocate
enough buffers for receiving data. As we know, DIB data contains three parts:
header BITMAPINFOHEADER, whose size is fixed; color table, whose size
depends on the data format; bitmap bit values, whose size depends upon both
the bitmap format and bitmap dimension.

We need to calculate the size of color table and bitmap bit values before
allocating memory for storing DIB. The attributes of a DDB can be obtained from
function CBitmap::GetBitmap(...). The information will be stuffed into a BITMAP
type object, from which we know the properties of a bitmap such as its height
and width, bit count per pixel. The size of the color table can be calculated from
bit count per pixel information.

Lets further take a look at function ::GetDIBits(...):

(Code omitted)

Its parameters are similar to that of funciton ::CreateDIBitmap(). Since DDB is
device dependent, we must know the attribute of device context in order to
convert DDB to DIB. So we must pass the handle of the target DC to the first
parameter of this function. Parameter uStartScan and uScanLines specify the
starting raster line and total number of raster lines whose data is to be retrieved.
Parameter lpBits specifies the buffer address that can be used to recieve bitmap
data. Pointer lpbi provides a BITMAPINFO structure specifying the desired format
of DIB data.

When calling this function, we can pass NULL to pointer lpvBits. This will cause
the function to fill the bitmap information into a BITMAPINFO object. By doing
this, we can get the color table that is being used by the DDB.

So the conversion takes three steps: 1) Call function CBitmap::GetBitmap(...) to
obtain the information of the bitmap, calculate the color table size, allocate
enough buffers for storing bitmap information header and color table. 2) Call
function ::GetDIBits(...) and pass NULL to parameter lpvBits to receive bitmap
information header and color table. 3) Reallocate buffers for storing bitmap data
and call ::GetDIBits(...) again to get the DIB data.

New Functions

Sample 10.4\GDI demonstrates how to convert DDB to DIB and save the data to
hard disk.

First some functions are added to class CGDIDoc, they will be used for
converting DDB to DIB:

(Code omitted)

Function CGDIDoc::ConvertDDBtoDIB(...) converts DDB to DIB, its input
parameter is a CBitmap type pointer and its return value is a global memory
handle. Function CGDIDoc::GetColorTableSize(...) is used to calculate the size of
color table from bit count per pixel information (In the previouse samples, color
table size calculation is implemented within function
CGDIView::OnInitialUpdate(). Since we need color table size information more
frequently now, this calculation is implemented as a single member function):

(Code omitted)

In function CGDIDoc::ConvertDDBtoDIB(...), first we must obtain a handle to the
client window that can be used to create a DC:

(Code omitted)

Then function CBitmap::GetBitmap(...) is called to retrieve the information of
bitmap and allocate enough buffers for storing structure BITMAPINFOHEADER
and color table:

(Code omitted)

We first fill the information obtained previously into a BITMAPINFOHEADER
object. This is necessary because when calling function ::GetDIBits(...), we need
to provide a BITMAPINFOHEADER type pointer which contains useful information.
Here, some unimportant members of BITMAPINFOHEADER are assigned 0s
(biSizeImage, biXPelsPerMeter...). Then the size of the color table is calculated
and a global memory that is big enough for holding bitmap information header
and color table is allocated, and the bitmap information header is stored into the
buffers. We will use these buffers to receive color table.

Although the memory size for storing bitmap data can be calculated from the
information already known, usually it is not done at this point. Generally the
color table and the bitmap data are retrieved separately, in the first step, only
the memory that is big enough for storing structure BITMAPINFOHEADER and
the color table is prepared. When color table is being retrieved, the bitmap

information header will also be updated at the same time. Since it is more
desirable to calculate the bitmap data size using the updated information, in the
sample, the memory size is updated after the color table is obtained
successfully, and the global memory is reallocated for retrieving the bitmap data.

We also need to select logical palette into the DC and realize it so that the
bitmap pixels will be intepreted by its own color table.

Function ::GetDIBits(...) is called in the next step to recieve
BITMAPINFOHEADER data and the color table. Because some device drivers do
not fill member biImageSize (This member carries redunant information with
members biWidth, biHeight, and biBitCount), we need to calculate it if
necessary:

(Code omitted)

Now the size of DIB data is already known, we can reallocate the buffers, and
call function ::GetDIBits(...) again to receive bitmap data. Finally we need to
select the logical palette out of the DC, and return the handle of the global
memory before function exits:

(Code omitted)

Using New Functions

Using function CGDIDoc::ConvertDDBtoDIB(...), it is farily easy to save the
bitmap into a file. All we need is to call this function to convert DDB to DIB, add
a BITMAPFILEHEADER structure to it, and write the whole data into a file. In the
sample, file saving is implement in function CGDIDoc::Serialize(...):

(Code omitted)

In the sample, command File | Save is disabled so that the user can only save
the image through File | Save As command by specifying a new file name. To
implement this, UPDATE_COMMAND_UI message handlers are added for both
ID_FILE_SAVE and ID_FILE_SAVE_AS commands, and the corresponding
member functions are implemented as follows:

(Code omitted)

It seems unnecessary to conver the DDB to DIB before saving the image to a
disk file because its original format is DIB. However, if the DDB is changed after
being loaded (This is possible for a graphic editor application), the new DDB is
inconsistent with the original DIB data.

The DDB to DIB converting procedure is a little complex. If we are programming
for Windows 95 or Windows NT 4.0, we can create DIB section (will be
introduced in later sections) to let the format be converted automatically. If we
are writing Win32 programs that will be run on Windows 3.1, we must use the
method discussed in this section to implement the conversion.

10.5 Drawing DIB Directly

The counterpart function of ::GetDIBits(...) is ::SetDIBits(...), it can be used to
convert DIB data to device dependent bitmap. The two functions provide us a
way of implementing image editing: whenever we want to make change to the
image, we can first retrieve DIB data from the DDB, edit the DIB data, and set it
back to DDB.

New Functions

Sometimes it is easier to edit DDB directly instead of using DIB data. For
example, if we want to reverse every pixel of the image, we can just call one API
funciton to let this be handled by lower level driver instead of editting every
single pixel by ourselves. This is why we need to handle both DIB and DDB in the
applications.

If our application is restricted on edittng only DIB data, we can call an API
function directly to draw DIB in the client window. By doing so, we eleminte the
complexity of converting DIB to DDB back and forth. This function is
::SetDIBitsToDevice(...), which has the following format:

(Code omitted)

There are altogether 12 parameters, whose meanings are listed in the following
table:

(Table omitted)

This function can output image at 1:1 ratio with respect to the source image.
Similar to CDC::BitBlt(...) and CDC::StretchBlt(...), there is another function
::StretchDIBits(...), which allows us to enlarge or reduce the original image and
output it to the target device:

(Code omitted)

The ratio between source and target image can be set through the following four
parameters: nDestWidth, nDestHeight, nSrcWidth, nSrcHeight.

Modifications Made to Document

Sample 10.5\GDI is based on sample 10.4\GDI, it demonstrates how to use the
above two functions.

With the new functions, many implementations in the previouse sample can be
eleminated. First, on the document side, we no longer need CBitmap type
variable (CGDDoc::m_bmpDraw) any more. We will use CGDIDoc::m_hDIB to
store DIB data, which can be used directly to draw the image. Also we do not
need function CGDIDoc::ConvertDDBtoDIB(...). Function
CGDIDoc::GetColorTableSize(...) is still needed because we can use it to
calculate the size of BITMAPINFO structure (BITMAPINFOHEADER and color
table). In the sample, variable CGDIDoc::m_bmpDraw and function
CGDIDoc::ConvertDDBtoDIB() are removed. The following is the modified class:

(Code omitted)

When saving image to file, we do not need to convert DDB to DIB any more.
Instead, CGDIDoc::m_hDIB can be used directly for storing data:

(Code omitted)

Note since biSizeImage member of BITMAPINFOHEADER structure may be zero,
we need to calculate its value before saving the image to file. Also, the original
statement for releasing global memory is deleted because CGDIDoc::m_hDIB is
the only variable that is used for storing image in the application.

Function CGDIDoc::OnUpdateFileSaveAs(...) is changed to the following:

void CGDIDoc::OnUpdateFileSaveAs(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_hDIB != NULL);

}

Modifications Made to View

On the view side, we do not need memory DC any more, so three variables
CGDIView::m_dcMem, CGDIView::m_pBmpMemOld and
CGDIView::m_pPalMemOld are deleted. Since the image size can be obtained
from DIB data, variable CGDIView::m_bmInfo can also be eleminated. The
following code fragment shows the modified class CGDIView:

(Code omitted)

In function CGDIView::OnInitialUpdate(), there is no need to create DDB any
more. So in the updated function, only the logical palette is created:

(Code omitted)

In this functon, DIB handle is obtained from the document and locked. From the
global memory buffers, the color table contained in the DIB is obtained and is
used for creating the logical palette. The a flag is set to indicate that the bitmap
is loaded successfully.

In function CGDIView::OnDraw(...), the DIB is painted to the client window:

(Code omitted)

The procedure of selecting and realizing the logical palette is the same with the
previous sample. The difference between them is that function CDC::BitBlt(...) is
replaced by function ::SetDIBitsToDevice(...) here.

Message handler CGDI::OnDestroy() is removed through using Class Wizard in
the sample. The reason for this is that we no longer need to select objects
(palette, bitmap) out of memory DC any more. Also, the constructor of
CGDIView is changed as follows:

(Code omitted)

With the above modification, the application is able to display any DIB image
without doing DIB to DDB conversion.

10.6 Bitmap Format Conversion: 256-color to 24-bit

Now that we understand different DIB formats, we can easily implement
conversion from one format to another. Sample 10.6\GDI demonstrates how to
convert 256-color DIB format to 24-bit format, it is based on sample 10.5\GDI.

Conversion

We need to delete the color table and expand the indices to explicit RGB
combinations in order to implement this conversoin. Also in the bitmap
information header, we need to change the value of member biBitCount to 24,
and recalculate member biImageSize. There is also another difference in the
bitmap header bwteen 256-color and 24-bit formats: for DIB that does not
contain the color table, member biClrUsed is 0; for DIB that contains the color

table, this member specifies the number of color indices in the color table that
are actually used by the bitmap.

Current Format

In the sample, a new command Convert | 256 to RGB is added to the mainframe
menu IDR_MAINFRAME, whose command ID is ID_CONVERT_256TORGB. Also,
WM_COMMAND and UPDATE_COMMAND_UI message handlers are added for this
command through using Class Wizard. The corresponding functions are
CGDIDoc::OnConvert256toRGB() and CGDIDoc::OnUpdateConvert256toRGB(...)
respectively. This command will be used to convert the image from 256-color
format to 24-bit format. We want to disable this menu item if the current DIB is
not 256 color format.

Before doing the conversion, we must know the current format of the image. So
in the sample, a new variable is declared in class CGDIDoc for this purpose:

class CGDIDoc : public CDocument

{

protected:

......

int m_nBmpFormat;

......

}

The following macros are defined in the header file of class CGDIDoc:

#define BMP_FORMAT_NONE 0

#define BMP_FORMAT_MONO 1

#define BMP_FORMAT_16COLOR 2

#define BMP_FORMAT_256COLOR 3

#define BMP_FORMAT_24BIT 4

Variable CGDIDoc::m_nBmpFormat is initialized in the constructor:

CGDIDoc::CGDIDoc()

{

......

m_nBmpFormat=BMP_FORMAT_NONE;

}

Whenever a DIB is loaded, function CGDIDoc::GetColorTableSize(...) will be
called by CGDIView:: OnInitialUpdate(), so it is convenient to set
CGDIDoc::m_nBmpFormat to an appropriate value to indicate the image format
in this function. The following code fragment shows the modified function
CGDIDoc::GetColorTableSize():

(Code omitted)

Function Implementation

Function CGDIDoc::OnUpdateConvert256toRGB(...) is implemented as follows so
that the menu command will be enabled only when the current DIB format is 256-
color:

void CGDIDoc::OnUpdateConvert256toRGB(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_nBmpFormat == BMP_FORMAT_256COLOR);

}

In function CGDIDoc::OnConvert256toRGB(), first we need to lock the current
DIB data, calculate the size of new DIB data (after format conversion) and
allocate enough buffers:

(Code omitted)

The new DIB size is stored in local variable dwSize. Here macro WIDTHBYTES is
used to calculate the actual bytes needed for one raster line (We use 24 instead
of member biBitCount when using this macro to implement calculation for the
new format). The size of new DIB data is the size of BITMAPINFOHEADER
structure plus the size of bitmap data (Equal to bytes needed for one raster line

multiplied by the height of bitmap, there is no color table any more). Then we
allocate buffers from global memory and lock them, whose address is stored in
pointer lpBi24.

Then we need to fill structure BITMAPINFOHEADER. Most of the members are the
same for two different formats, such as biHeight, biWidth. There are three
members we need to change: biBitCount must be set to 24, biImageSize should
be recalculated, and biClrUsed needs to be 0:

(Code omitted)

Then we need to fill the DIB bit values. The image is converted pixel by pixel
using two loops (one is embedded within another): the outer loop converts one
raster line, and the inner loop converts one single pixel. As we move to a new
raster line, we need to calculate the starting buffer address so that it can be
used as the origin of the pixels for the whole raster line (For each single pixel,
we can obtain its address by adding an offset to the origin address). The starting
address of each raster line can be calculated through multiplying the current line
index (0 based) by total number of bytes needed for one raster line. As we move
from one pixel to the next of the same raster line, we can just move to the
neighboring buffer (for RGB format, next three buffers). However, the final pixel
of one raster line and the first pixel of next raster line may not use neighboring
buffers, this is because there may exist some unused bits between them (Since
each raster line must use a multiple of 4-byte buffers). The following portion of
function CGDIDoc::OnConvert256toRGB() shows how to convert bitmap pixels
from one format to another:

(Code omitted)

Finally, we must unlock the global memory, release the previous DIB data and
assign the new memory handle to CGDIDoc::m_hDIB. We also need to inform
the view to reload the image because the bitmap format has changed. For this
purpose, a new function CGDIView::LoadBitmap(...) is implemented, it will be
called from CGDIDoc::OnConvert256toRGB() and CGDIView::OnInitialUpdate()
(The original portion of this funciton that loads the bitmap is replaced by calling
the new function). The following is the portion of funciton
CGDIDoc::OnConvert256toRGB() which shows what should be done after the
format is converted:

(Code omitted)

Function CGDIView::LoadBitmap(...) should implement the following: delete the
old palette, check if the DIB contains color table. If so, create a new palette. The
function is declared in class CGDIView as follows:

(Code omitted)

The function is implemented as follows (Most part of this function is copied from
function CGDIView::OnInitialUpdate()):

(Code omitted)

With this function, CGDIView::OnInitialUpdate() can be simplified to the
following:

(Code omitted)

With the above implementation, the application is able to convert a bitmap from
256-color format format to 24-bit format.

10.7 Converting 24-bit Format to 256-color Format

Sample 5.7\GDI is based on sample 5.6\GDI, it demonstrates how to convert 24-
bit bitmap format to 256-color format.

Two Cases

To convert a 24-bit format bitmap to 256-color format bitmap, we must extract a
color table from the explicit RGB values. There are two cases that must be
handled differently: the bitmap uses less than 256 colors, and the bitmap uses
more than 256 colors.

If the bitmap uses less than 256 colors, the conversion is relatively simple: we
just examine every pixel of the bitmap, and extract a color table from all the
colors contained in the bitmap.

The following is the conversion procedure for this situation: At the beginning, the
color table contains no color. Then for each pixel in the bitmap, we examine if
the color is contained in the color table. If so, we move to the next pixel. If not,
we add the color used by this pixel to the color table. After we go over all the
pixels contained in the bitmap, the color table should contain all the colors that
are used by the bitmap image.

If the bitmap uses more than 256 colors, we must find 256 colors that best
represent all the colors used by the image. There are many algorithms for doing
this, a relatively simple one is to omit some lower bits of RGB values so that
maximum number of colors used by a bitmap does not exceed 256. For example,
24-bit bitmap format uses 8 bit to represent a basic color, it can result in
256(256(256 different colors. If we use only 3 bits to represent red and green
color, and use 2 bits to represent blue color, the total number of possible

combinations are 8(8(4=256.

In this situation, when we examine a pixel, we use the 3 most significant bits of
red and green colors, along with 2 most significant bits of blue color to form a
new color that will be used to create color table (Other bits will be filled with 0s).
By doing this, the colors contained in the color table will not exceed 256.
Although this algorithm may result in color distortion, it is relatively fast and less
image dependent.

Sample

In the sample, a new command Convert | RGB to 256 is added to mainframe
menu IDR_MAINFRAME, whose command ID is ID_CONVERT_RGBTO256. Also,
WM_COMMAND and UPDATE_COMMAND_UI message handlers are added
through using Class Wizard. The new corresponding functions are CGDIDoc::
OnConvertRGBto256() and CGDIDoc::OnUpdateConvertRGBto256(...)
respectively.

Function CGDIDoc::OnUpdateConvertRGBto256(...) is implemented as follows:

void CGDIDoc::OnUpdateConvertRGBto256(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_nBmpFormat == BMP_FORMAT_24BIT);

}

If the current bitmap format is 24-bit, command Convert | RGB to 256 will be
enabled.

The implementation of function CGDIDoc::OnConvertRGBto256() is somehow
similar to that of CGDIDoc::OnConvert256toRGB(): we must first lock the global
memory where the current 24-bit bitmap image is stored, then calculate the size
of new bitmap image (256-color format), allocate enough buffers from global
memory, and fill the new bitmap bit values one by one.

The first thing we need to do is creating the color table for the new bitmap
image. The following portion of function CGDIDoc::OnConvertRGBto256() shows
how to extract the color table from explicit RGB colors contained in a 24-bit
bitmap image:

(Code omitted)

We examine from the first pixel. The color table will be stored in array
arRgbQuad, which is empty at the beginning. For each pixel, we compare the
color with every color contained in the color table, if there is a hit, we move on
to next pixel, otherwise, we add this color to the color table.

The size of color table obtained this way may be less or greater than 256. In the
first case, the conversion is done after the above operation. If the color table
size is greater than 256, we must create a new color table using the alogrithsm
discussed above:

(Code omitted)

If the size of color table is greater than 256, we first delete the color table, then
create a new color table that contains only 256 colors. This color table comprises
256 colors that are evenly distributed in a 8(8(4 3-D space, which has the
following contents:

(Table omitted)

For a 24-bit color, if we use only 3 most significant bits of red and green colors,
and 2 most significant bits of blue color, and set rest bits to 0. Every possible
RGB combination (8 bits for each color) has a corresponding entry in this table.

We use a flag bStandardPal to indicate which algorithm was used to generate the
color table. This is important because for the two situations the procedure of
converting explicit RGB values to indices of color table is different. If the color
table is generated directly from the colors contained in the bitmap (first case),
each pixel can be mapped to an index in the color table by comparing it with
every color in the color table (there must be a hit). Otherwise, we must omit
some bits before looking up the color table (second case).

Following is a portion of function CGDIDoc::OnConvertRGBto256() that allocates
buffers from global memory, fill the buffers with bitmap information header and
color table:

(Code omitted)

The differences between the new and old bitmap information headers are
member bitBitCount (8 for 256-color format), biSizeImage, and biClrUsed
(Member biClrUsed can be used to indicate the color usage. For simplicity, it is
set to zero).

Next we need to convert explicit RGB values to color table indices. As mentioned
before, there are two situations. If the color table is extracted directly from the
bitmap, we must compare each pixel with every entry of the color table, find the

index, and use it as the bitmap bit value. Otherwise the index can be formed by
omitting the lower 5 bits of red and green colors, the lower 6 bits of blue color
then combining them together. This eleminates the procedure of looking up the
color table. It is possible for us to do so because the color table is created in a
way that if we implement the above operation on any color contained in the
table, the result will become the index of the corresponding entry.

For example, entry 1 contains color (32, 0, 0), which is (0x20, 0x00, 0x00).
After bit omission, it becomes (0x01, 0x00, 0x00). The followng calculation will
result in the index of this entry:

red | (green << 3) | (blue << 6)

By using this method, we do not need to look up the color table.

The following portion of function CGDIDoc::OnConvertRGBto256() shows how to
convert explicit RGB values to indices of the color table:

(Code omitted)

Finally, we must unlock the global memory, destroy the original 24 bit bitmap,
and assign the new handle to variable CGDIDoc::m_hDIB. We also need to
delete the array that holds the temprory color table and update the view to
redraw the bitmap image:

(Code omitted)

With this application, we can convert between 256-color and 24-bit bitmap
formats back and forth. If the application is executed on a palette device with
256-color configuration, we may experience color distortion after converting a
256-color format bitmap to 24-bit format bitmap. This is because for this kind of
bitmap, no logical palette is implemented in the application, so the color
approximation method is applied by the OS.

10.8 Pixel Manipulation

With the above knowledge, it is easy for us to implement pixel manipulation on a
DIB image. For different types of DIB formats, the procedure of manipulating
pixel is different. If the format is color table based, we need to retrieve the color
of a pixel through the color table. If the format is not color table based, we can
directly edit the color of a pixel.

Sample 10.8\GDI demonstrates how to edit DIB image pixel by pixel. It is based
on sample 10.7\GDI. The application will convert any color image to a black-and-
white image. To make the conversion, we need to examine every pixel and find

its brightness, average it, and assign the averaged value to each of the R, G, B
factors. The brightness of a pixel can be calculated by adding up its R, G and B
values. For 256-color format, since all the colors are stored in the color table, we
can just convert the color table to a black-and-white one in order to make this
change. No modification needs to be made to the pixels. For 24 bit format, we
need to edit every pixel.

In the sample, a new command Convert | Black White is added to the mainframe
menu IDR_MAINFRAME. Also, WM_COMMAND and UPDATE_COMMAND_UI
message handlers are added to class CGDIDoc through using Class Wizard. The
corresponding two new functions are CGDIDoc::OnConvertBlackwhite() and
CGDIDoc::OnUpdateConvertBlackwhite(...) respectively.

Function CGDIDOC::OnUpdateConvertBlackwhite(...) is implemented as follows
for supporting both 256-color and 24-bit formats:

(Code omitted)

For function CGDIDoc::OnConvertBlackwhite(), first we need to lock the global
memory that is used for storing the bitmap, and judge its format by examining
biBitCount member of structure BITMAPINFOHEADER:

(Code omitted)

If its value is 8, the format of the bitmap is 256-color. We need to change each
color contained in the color table to either black or white color:

(Code omitted)

For every color, we add up its R, G, B values and average the result. Then we
assign this result to each of the R, G, B factors.

The 24 bit format is slightly different. We need to examine each pixel one by one
and implement the same conversion:

(Code omitted)

Finally, we need to unlock the global memory and update the view to reload the
bitmap image.

Based on the knowledge we already have, it is not so difficult for us to enhance
the quality of the images using other image processing methods, such as
contrast and brightness adjustment, color manipulation, etc.

10.9 DIB Section: Using Both DIB and DDB

Sample 10.9\GDI demonstrates how to draw an image with transparent
background on the client window. It is based on sample 10.8\GDI.

Importance of DDB

By now everything seems fine. We use DIB format to load, store image data. We
also use it to draw images. Withoug converting from DIB to DDB and vice versa,
we can manage the image successfully.

However, sometimes it is very inconvenient without DDB. For example, it is
almost impossible to draw an image with transparency by solely using DIB (We
will call the transparent part of an image "background" and the rest part
"foreground"). Although we can edit every pixel and change its color, there is no
way for us to prevent a pixel from being drawn, because functon
::SetDIBitsToDevice(...) will simply copy every pixel contained in an image to
the target device (It does not provide different drawing mode such as bit-wise
AND, OR, or XOR).

To draw image with transparency, we need to prepare two images, one is normal
image and the other is mask image. The mask image has the same dimension
with the normal image and contains only two colors: black and white, which
indicate if a corresponding pixel contained in the normal image should be drawn
or not. If a pixel in the normal image has a corresponding black pixel in the
mask image, it should be drawn. If the corresponding pixel is white, it should not
be drawn. By doing this, any image can be drawn with transparency.

A DDB image can be painted with various drawing modes: bit-wise AND, OR,
XOR, etc. Different drawing modes will combine the pixels in the source image
and the pixels in the target device differently. Special effects can be made by
applying different drawing modes consequently.

When drawing a DDB image, we can use bit-wise XOR along with AND operation
to achieve transparency. First, the normal image can be output to the target
device by using bit-wise XOR mode. After this operaton, the output pattern on
the target device is the XORing result of its original pattern and the normal
image. Then the mask bitmap is output to the same position using bit-wise AND
mode, so the background part (corresponding to white pixels in the mask image)
of the device still remains unchanged (it is still the XORing result of the original
pattern and the normal image), however, the foreground part (corresponding to
black pixels in the mask image) becomes black. Now lets ouput the normal
image to the target device using bit-wise XOR mode again. For the background
part, this is equivalent to XORing the normal image twice with the original
pattern on the target device, which will resume its original pattern (A^B^A = B).

For the foreground part, this operation is equivalent to XORing the normal image
with 0s, which will put the normal image to the device (0^B = B).

Although the result is an image with a transparent background, when we
implement the above-mentioned drawings, the target device will experience
pattern changes (Between two XOR operations, the pattern on the target device
is neigher the original pattern nor the normal image, this will cause flickering).
So if we do all these things directly to the device, we will see a very short
flickering every time the image is drawn. To make everything perfect, we can
prepare a bitmap in the memory and copy the pattern on the target device to it,
then perform XOR and AND drawing on the memory bitmap. After the the
drawing is complete, we can copy the memory bitmap back to the device. For
the memory bitmap, since its background portion has the same pattern with that
of the target device, we will not see any flickering.

To paint a DDB image, we need to prepare a memory DC, select the bitmap into
it, then call function CDC::BitBlt(...) or CDC::StretchBlt(...) to copy the image
from one device to another.

In order to draw an image with transparent background, we need to prepare
three DDBs: the normal image, the mask image, and the memory bitmap. For
each DDB, we must prepare a memory DC to select it. Also, because the DDB
must be selected out of DC after drawing, we need to prepare a CBitmap type
pointer for each image.

Since the usr can load a new image when there is an image being displayed, we
need to check the states of variables that are used to implement DCs and
bitmaps. Generally, before creating a new memory DC, it would be safer to
check if the DC has already been initialized. If so, we need to delete the current
DC and create a new one. Before deleting a DC, we further need to check if there
are objects (such as bitmap, palette) currently being selected. All the objects
created by the user must be selected out before a DC is delected. The DC can be
deleted by calling function CDC::DeleteDC(). Also, before creating a bitmap, we
need to check if the bitmap has been initialized. If so, before creating a new
bitmap, we need to call function CGDIObject::DeleteObject() to destroy the
current bitmap first.

Functions CBitmap::CreateBitmap(...) and CDC::CreateCompatibleDC(...) will fail
if CBitmap and CDC type variables have already been initialized.

If a logical palette is implemented, we must select it into every DC before
performing drawing operations. Before the application exits, all the objects
selected by the DCs must be selected out, otherwise it may cause the system to
crash.

Although we can prepare normal image and mask image separately, it is not the
most convenient way to implement transparent background. The mask image
can also be generated from the normal image so long as all the background
pixels of the normal image are set to the same color (For example, white). In
this situation, pixel in the mask image can be set by examing the corresponding
pixel in the normal image: if it is the background color, the pixel in the mask
image should be set to white, otherwise it should be set to black.

DIB Section

Both DIB and DDB are needed in order to implement transparent background
drawing: we need DIB format to generate mask image, and need DDB to draw
the image. Of course we can call ::GetDIBits(...) and ::SetDIBits(...) to convert
between DIB and DDB format, however, there exists an easier way to let us
handle DIB and DDB simultaneously.

A DIB section can be created to manage the image so that we can have both the
DIB and DDB features without doing the conversion. A DIB section is a memory
section that can be shared between the process and the system. When a change
is made within the process, it is automatically updated to the system. By doing
this, there is no need to update the data using functions ::GetDIBits(...) and
::SetDIBits(...).

We can call function ::CreateDIBSection(...) to create a DIB section. This
function will return an HBITMAP handle, which can be attached to a CBitmap
variable by calling function CBitmap::Attach(...).

Function ::CreateDIBSection(...) has six parameters:

HBITMAP ::CreateDIBSection

(

HDC hdc,

CONST BITMAPINFO *pbmi, UINT iUsage, VOID *ppvBits, HANDLE hSection,

DWORD dwOffset

);

(Table omitted)

After calling this function, we can access the buffers pointed by ppvBits and

make change to the DIB bits directly, there is no need for us to do any DIB to
DDB conversion or vice versa. After the change is made, we can draw the bitmap
immediately by calling funciton CDC::BitBlt(...), this will draw the updated image
to the window.

New Variables

The following new variables are declared in class CGDIView for drawing bitmap
with transparancy:

(Code omitted)

Altogether there are four CBitmap type variables, three CBitmap type pointers,
three CDC type variables, and three CPalette type pointers. Their meanings are
explained in the following table:

(Table omitted)

To make the application more interesting, we will also draw the background of
client window using bitmap. This bitmap will be loaded into m_bmpBkd variable.

The six pointers are initialized to NULL in the constructor:

(Code omitted)

Cleaning Up

A new function CGDIView::CleanUp() is added to the application for doing the
clean up job. Within this function, all the objects selected by the DCs are
selected out, then DCs and bitmaps are deleted:

(Code omitted)

If a pointer is not NULL, it means that there is an object being currently selected
by the DC, so funciton CGDIObject::SelectObject(...) is called to select the
object (palette or bitmap) out of the DC before destroying it.

We need to call this function just before the application exits. In the sample, a
WM_DESTROY message handler is added to class CGDIView through using Class
Wizard. The corresponding member function is implemented as follows:

(Code omitted)

Loading Bitmap & Creating Mask Bitmap

In the sample, funciton CGDIView::LoadBitmap(...) is changed. In the new
function, a DIB section is created from the DIB data, and the mask bitmap image
is generated from the normal image. The palette creation precedure is still the
same. The handle retruned from the DIB section is attached to variable
CGDIView::m_bmpDraw:

(Code omitted)

Please note that function CGDIView::CleanUp() is called before the bitmap is
created. After the DIB section is created, we use the DIB data passed through
hData parameter to initialize the image. The buffers that store DIB bit values are
pointed by pointer pBits. We can use it to edit the image pixels directly, there is
no need to convert between DDB and DIB foramts any more.

After the bitmap is loaded, we need to create the mask bitmap, memory bitmap,
and theree memory DCs. We also need to select the bitmaps and the logical
palette into the DCs if necessary:

(Code omitted)

The mask and memory bitmaps must be created by calling function CBitmap::
CreateCompatibleBitmap(...), this will allow the created bitmaps to be
compatible with the device context.

Next, the mask bitmap is generated from the normal bitmap image:

(Code omitted)

Every pixel of the normal image is examined to generate the mask image. Here
functions CDC::GetPixel(...) and CDC::SetPixel(...) are called for manipulating
single pixels. Although the two functions hide the details of device context and
bitmap format, they are very slow, and should not be used for fast bitmap
drawing or image processing.

Drawing Bitmap with Transparancy

Function CGDIView::OnDraw(...) is modified as follows for drawing bitmap with
transparency:

(Code omitted)

In the above function, the pattern on the target device is first copied to the
memory bitmap. Then function CDC::BitBlt(...) is called three times to draw the
normal image and mask image on the memory bitmap, with two XOR drawings

of the normal image (first and thrid operations) and one AND mode drawing of
the mask image (second operation). Finally, the new pattern in the memory
bitmap is copied back to the targert device.

Adding Background

If the window's background is also white, it is difficult for us to see the
transparency effect. To show this effect, in the sample, the background of the
client window is also painted with a bitmap image.

The image that is used to paint the background is prepared as a resource, whose
ID is IDB_BITMAPBKD. The bitmap is loaded to variable CGDIView::m_bmpBkd
in function CGDIView:: OnInitialUpdate():

(Code omitted)

The bitmap can also be loaded in the constructor of CGDIView.

To paint the background of a window, we need to handle message
WM_ERASEBKGND and implement background drawing by ourseleves in the
message hanlder. In the sample, this message handler is added through using
Class Wizard, and the corresponding function is implemented as follows:

(Code omitted)

This function simply draw the bitmap image repeatedly so that the whole client
area is covered by the image.

To test this sample, we may use it to load any bitmap images with white
background.

Figure 10-1 shows the result after 10.9\Rose.bmp is loaded into the application.

(Figure 10-1 omitted)

10.10 Creating Chiseled Effect

We will continue to show the power of DDB. Sample 10.10\GDI demonstrates
how to convert a normal bitmap to a grayed image with chiseled effect. It is
based on sample 10.9\GDI. We can see that with DDB, this effect can be easily
implemented with just a few CDC::BitBlt(...) calls. If we use DIB, we will have to
make very complex mathematical calculation, and the program will become very
slow.

The chiseled effect can be implemented by drawing the outline of an object with
two different colors: highlighted color and shadowed color. Usually white is used
as the the highlighted color and dark gray is used as the shadowed color. For
example: the rectangle in Figure 10-2 uses white and dark gray as the
highlighted and shadowed colors respectivly, it creates a chiseled effect:

Algorithm

The chiseled effect can be implemented with the following algorithm: find out the
object's outline, imagine some parallel lines with 135(angle are drawn from the
upper left side to bottom right side (Figure 10-3). Think these lines as rays of
light. If we draw the portion of the outline that first encounters these parallel
lines (the portion facing the light) with shadowed color, and draw the rest part of
the outline (the portion facing away fromt he light) with highlighted color, the
object will have a chiseled effect. If we swap the shadowed and highlighted
colors, it will result in an embossed effect.

If we have a 2-D binary image (an image that contains only two colors: white
(255, 255, 255) and black (0, 0, 0)), the outline can be generated by combining
the inverse image with the original image at an offset origin. For example, the
outline that should be drawn using the shadowed color can be generated with
the following steps:

1) Draw the original bitmap at position (0, 0).

2) Invert the bitmap image.

3) Combine the inverted image with the image drawn in step 1) with bit-wise OR
operation, with the inverted image be put at position (1, 1) (Figure 10-4).

The highlighted outline can be obtained in the same way, but we need to
combine the original bitmap and the inverted bitmap differently here:

1) Draw the original bitmap at position (1, 1).

2) Invert the bitmap image.

3) Combine the inverted image with the original image with bit-wise OR
operation, with the inverted image be put at position (0, 0) (Figure 10-5).

If we combine the two outlines and paint them with highlighted and shadowed
colors respectively, then fill the rest part with a normal color (A color between
the highlighted and shadowed color), we will have a 3D effect. For example, we
can use white as the highlighted color, dark gray as the shadowed color, and
light gray as the normal color.

Creating Binary Bitmap Image

So we need to generate monochrome black/white binary image from the original
color bitmap. Of course we can examine every pixel one by one and compare its
brightness with a threshold (Usually the threshold value is set to the middle
between the brightest and darkest color, which are white and black
respectively). If the brightness of a pixel is greater than the threshold, its color is
set to white, otherwise it will be set to black.

However, we can implement this conversion in an easier way. Remember, when
creating the bitmap by calling function CBitmap::CreateBitmap(...), we are
allowed to specify the bitmap's attributes, which includes the dimension of the
image, number of bytes in each raster line, and bit count per pixel. Here, the bit
count per pixel indicates how many bits will be used for representing a single
pixel. If we set it to 1, the image can have only 2 colors, and will be
automatically converted to mono chrome fomat no matter what kind of data we
use to initialize the bitmap.

Raster Operation Mode

Another issue needs to be discussed here is how to draw the outline portion
using specified color without affecting rest part of the image. In order to
implement this, we can treat the two outline bitmaps as masks, and draw only
the unmasked pixels with specified colors. This procedure is similar to that of
drawing bitmaps with transparency.

When calling function CDC::BitBlt(...) or CDC::StretchBlt(...) to paint the
bitmap, we always need to specify the drawing mode, which specifies how to
combine the pixels in the source bitmap with the corresponding destination
pixels. This drawing mode is also called raster operation mode, because it is
applicable only to raster devices (Contary to the raster devices are vector
devices, for example, a plotter is a vector device). We have many choices such
as bit-wise AND, OR, XOR etc. Actually, we can specify more complex
combinations among the following three different objects when calling the above
two functions: the pixel in the source bitmap, the corresponding pixel in the
target device, and the brush currently being selected by the DC. We can specify
up to three Boolean bit-wise operations among them.

For example, the following operation will draw the outline on the destination
bitmap with the brush color:

(Brush Color) XOR (Destinaton Color) AND (Source Color) XOR (Brush Color)

The reason is simple: After the first operation (between the brush and

destination pixels), the pixels in the target device will become the XOR
combination between the original pixel colors and the brush color. Next, this
XORed result will be ANDed with the source bitmap (Only the outlined part is
black, rest part is white), the outlined part on the target device will become
black and the rest part remains unchanged (still XORed result from the first
operation). Then we do XOR again between the target device and the brush, for
the outlined part, this operation will fill it with the brush color (A ^ 0 = A); for
the rest part, this will resume the original color for every pixel (A ^ B ^ A = B).

Chiselled Effect

With the following steps, we can create chiselled effect:

1) Create a brush with shadowed or highlighted color.

2) Paint the destination with the brush using bit-wise XOR operation mode.

3) Draw the mask bitmap on the target device using bit-wise AND operation
mode.

4) Paint the destination with the brush using bit-wise XOR operation mode again.

This will draw one of the outlines. Creating new brush and repeating the above
steps using the other mask bitmap can result in the chiselled effect.

The first and fourth steps can be implemented by calling function
CDC::PatBlt(...), which allows us to fill a bitmap with a brush using specified
operation mode:

BOOL CDC::PatBlt(int x, int y, int nWidth, int nHeight, DWORDdwRop);

The last parameter allows us to specify how to combine the color of the brush
with the destination pixels. To do bitwise XOR, we need to specify PATINVERT
mode.

So we can call CDC::PatBlt(...), CDC::BitBlt(...) and CDC::PatBlt(...) again to
draw the outline using the brush created by our own. However, there is a simpler
way. When calling function CDC::BitBlt(...), we can pass it a custom operation
code and let it do the above-mentioned operations in one stroke.

To find out the custom operation code, we need to enumerate all the possible
results from the combinations among brush, destination and source bits for our
raster operation:

(Brush Color) XOR (Destinaton Color) AND (Source Color) XOR (Brush Color)

The following table lists all the possible results from the above fomulae:

(Table omitted)

The sequence in the table must be arragned so that brush is in the first column,
source pixel in the second column and destination pixel in the third column. The
code resulted from the combination of the three bits must increment by one for
adjacent rows (In the above sample, for the first row it is 000, second row it is
001, third row it is 010...). If we read the output from the bit contained in the
last row to the bit in the first row (10111000), we will have 0xB8.

With this index, we can find a raster code that will implement this typical
operation for either CDC::BitBlt(...) or CDC::StretchBlt(...) calling. The table is
documented in Win32 programming, we can also find it in Appendix B.

By looking up the table, we know that the raster code needs to be use is
0x00B8074A.

Highlighted and Shadowed Colors

The standard highlighted and shadowed colors in the system can be retrieved by
calling function ::GetSysColor(...), which has the following format (The standard
system colors can be set by calling the counterpart function ::SetSysColor(...)):

DWORD ::GetSysColor(int nIndex);

The following is a list of some values of nIndex parameter that could be used to
retrieve some standard colors in the system:

(Table omitted)

In the sample, we choose COLOR_BTNHIGHLIGHT as the highlighted color, and
COLOR_BTNSHADOW as the shadowed color.

New Function

In the sample, a new function CreateGrayedBitmap(...) is declared in class
CGDIView to create grayed image from a nomal bimap:

(Code omitted)

The only parameter to this function is a CBitmap type pointer. The function will

return an HBITMAP handle, which is the grayed bitmap. Within the function, we
must prepare three bitmaps: the bitmap that will be used to store the final
grayed image, the mask image that stores the shadowed outline, and the mask
image that stores the highlighted outline. The function starts with creating these
bitmaps:

(Code omitted)

The final grayed image will be stored in variable bmpGray. We will refer image
created by this variable as "grayed image", although the image may not be
grayed in the interim.

The other two CBitmap type variables, bmpHilight and bmpShadow will be used
to store the outline mask images. We need two memory DCs, one used to select
the color bitmap (normal image passed through pointer pBmp, and grayed image
bmpGray) and one for binary bitmaps (the outline mask bitmaps). Note that
binary bitmaps are created with bit count per pixel set to 1 and the grayed
bitmap (actually it is a color bitmap, but we use only monochrom colors) is
created by calling function CBitmap:: CreateCompatibleBitmap(...). Since the DC
supports color bitmap (If the program is being run on a system with a color
monitor) , this will create a color bitmap compatible with the window DC.

Then we select the color bitmap and the binary bitmaps into the memory DCs
and create the outline mask images:

(Code omitted)

First we fill the mask bitmap with white color. Then we copy the patterns from
the original image to the mask bitmap image. When doing this copy, the first
horizontal line (the upper-most line) and the first vertical line (the left-most
vertical line) are eleminated from the original image (Pixels with coordinates (0,
y) and (x, 0) are elemented, where x can be 0, 1, ... , up to width of image -1; y
can be 0, 1, ..., up to height of image -1). The colors contained in the souce
bitmap will be automatically converted to black and white colors when we call
function CDC::BitBlt(...) because the target image is a binary bitmap. The souce
image is copied to the mask bitmap at the position of (0, 0). Then the original
bitmap is inverted, and merged with the mask image with bit-wise OR operation.
Here flag MERGEPAINT allows the pixels in the souce image and pixels in the
target image to be combined in this way. After these operations, the binary
bitmap image will contain the outline that should be drawn with the shadowed
color.

The following portion of the function generates the highlighted outline:

(Code omitted)

Next we create a brush with standard button face color and used it to fill the
grayed image (By default, the standard button face color is light gray. It can also
be customized to other colors):

(Code omitted)

The button face color is retrieved by calling ::GetSystColor(...) API function.
Actually, all the standard colors defined in the system can be retrieved by calling
this function. Next, we draw the highlighted outline of the grayed bitmap using
the standard highlighted color:

(Code omitted)

Also, the shadowed outline is drawn on the grayed image in the same way:

(Code omitted)

Finally, some clean up routines. Before this function exits, we call function
CBitmap::Detach() to detach HBITMAP type handle fromCBitmap type variable.
This is because we want to leave the HBITMAP handle for further use. If we do
not detach it, when CBitmap type variable goes out of scope, the destructor will
destroy the bitmap automatically, and therefore, the bitmap handle will no
longer be valid from then on.

Function CGDIView::LoadBitmap(...) & CGDIView::OnDraw(...)

In the sample, funciton CGDIView::LoadBitmap(...) is changed so that when the
user opens a normal color bitmap, the application will automatically convert it to
a grayed bitmap image. The original variables that are used to implement image
transparency along with the relavant functions are deleted. The only variable
remained in class CGDIView are m_bmpDraw, m_dcMem, m_pBmpOld and
m_pPalOld:

(Code omitted)

Function CGDIView::OnInitialUpdate(...) and CGDIView::OnCleanUp() are
modified in order to conform this change. Also, WM_ERASEBKGND message
handler is removed through using Class Wizard.

In function CGDIView::OnLoadBitmap(...), after the palette is created, we call
function CGDIView:: CreateGrayedBitamp(...) to create the grayed bitmap and
attach the returned handle to variable m_bmpDraw:

(Code omitted)

The bitmap that was originally created by function ::CreateDIBSection(...) is
destroyed. Finally, function CGIDView::OnDraw(...) is changed to draw the
grayed bitmap to the client window:

(Code omitted)

With the above implementations, the application is able to create grayed images
with chiselled effect.

Summary

1) Usually an image is stored to disk using DIB format. To display it on a specific
type of device, we must first convert it to DDB format, which may be different
from device to device.

2) To draw bitmap, we must prepare a memory DC, select the bitmap into it,
and copy the image between the memory DC and target DC.

3) Function CDC::BitBlt(...) can be used to draw the image with 1:1 ratio. To
draw an image with an enlarged or shrunk size, we need to use function
CDC::StretchBlt(...).

4) A DIB contains three parts: 1) Bitmap information header. 2) Color Table. 3)
DIB bit values. For the DIB files stored on the disk, there is an extra bitmap file
header ahead of DIB data.

5) We can call function ::GetDIBits(...) to get DIB bit values from a DDB selected
by a DC, and call function ::SetDIBits(...) to set DIB bit values to the DDB.

6) There are several DIB formats: monochrom format (2 colors), 16-color
format, 256-color format, 24-bit format. For each format, the total number of
colors contained in the color table is different. The pixels of 24-bit DIB contain
explict RGB values, for the rest formats, they contain indices to a color table
which resides in the bitmap information header.

7) In order to accelarate bitmap image loading and saving, each raster line of
the imge must use multiple of 4 bytes for storing the image data. The extra
buffers will simply be wasted if there are not enough image data.

8) The following information contained in the bitmap information header is very
important: 1) The dimension of the image (width and height). 2) Bit count per
pixel. 3) Image size, which can be calculated from the image dimension and bit
cout per pixel.

9) The size of a color table (in number of bytes) can be calculated from the
following formula:

for 24-bit format: 0

for other formats that contain color table: (size of structure RGBQUAD) (2Bit
count per pixel

10) The total image size can be calculated from the following formula:

for 24-bit format:

(size of bitmap information header) + (number of bytes for one raster line) (
image height

for other formats that contain color table:

(size of bitmap information header) + size of color table + (number of bytes for
one raster line) (image height

where number of bytes for on raster line can be calculated as:

(((bit count per pixel) ((image width) + 31)/32) (4

Before preparing DIB, we need the above information to allocate enough buffers
for storing DIB data.

11) Function ::SetDIBitsToDevice(...) can be used to draw DIB directly to a
device. We don't need to implement any DIB-to-DDB conversion. However, using
this function, we also lose the control over DDB.

12) DIB section can be created for managing the image in both DIB and DDB
format.

13) Bitmap with transparency can be implemented by using a mask image, and
drawing the normal and mask images using bit-wise XOR and AND operation
modes.

14) We can convert a color bitmap to a grayed image with chiselled or embossed
effect by finding out the outline of the object, then drawing the portion facing the
light with highlighted (shadowed) color and the portion facing away from the
light with shadowed (highlighted) color.

BACK TO INDEX

Chapter 11 Sample: Simple Paint
This chapter introduces a series of samples imitating standard "Paint" application,
using the knowledge from previous chapters. Also, some very useful concepts such
as region, path are discussed. By the end of this chapter, we will be able to build
simple graphic editor applications.

Samples in this chapter are specially designed to work on 256-color palette device.
To customize them for non-palette devices, we can just eleminate logical palette
creation and realization procedure.

11.0 Preparation

With the knowledge we already have, it is possible for us to built a simple graphic
editor now. So lets start to build an application similar to "Paint". Sample 11.0\GDI is a
starting application whose structure is similar to what we have implemented in
previous chapters. The application has the following functionalities: 1) Device
independent bitmap loading and saving. 2) DIB to DDB conversion (implemented
through DIB section). 3) Displaying DDB using function CDC::BitBlt(...). Lets first take a
look at class CGDIDoc:

(Code omitted)

We will support only 256 color device, so in the constructor, a logical palette with size
of 256 is created, the first 20 entries are filled with predefined colors. Later when we
implement the application, colors contained in the first 20 entries of this logical
palette will be displayed on a color bar that could be used by the user for
interactive drawing. In the sample, variable CGDIDoc::m_palDraw implements a
logical palette, which will be used throughout the application's lifetime. In the
constructor, a default palette is created and the current colors in the system palette
are used to initialize the logical palette (Of course, we can also initialize the logical
palette with user-defined colors). When a new bitmap is loaded, colors contained in
the color table of the bitmap will be used to fill the logical palette.

After the DIB is loaded, its handle will be stored in variable CGDIDoc::m_hDIB, which
is initialized to NULL in the constructor. In function CGDIDoc::Serialize(...), the bitmap

is loaded into memory and stored to disk.

Function CGDIDoc::GetHDib() and CGDIDoc::GetPalette() let us access the DIB and
logical palette outside class CGDIDoc.

The following is a portion of class CGDIView:

(Code omitted)

Here variable m_bmpDraw is used to store the device dependent bitmap, variable
m_dcMem is the memory DC that will be used to select this bitmap. Other two
pointers m_pBmpOld and m_pPalOld will be used to resume m_dcMem's original
state.

Function CGDIView::LoadBitmap(...) will be called from function
CGDIView::OnInitialUpdate(), when a new bitmap is loaded by the application. In
this function a DIB section will be created, and the returned HBITMAP handle will be
attached to variable CGDIView::m_bmpDraw. So any operation on the DDB will be
reflected to DIB bit values. Also if we modify DIB bits, the DDB will be affected
automatically. In the function, the color table contained in the DIB is extracted, and
the entries of the logical palette (implemented in the document) are updated with
the colors contained in the bitmap file by calling function
CPalette::SetPaletteEntries(...).

After a bitmap is loaded, it will be painted to the client window by calling
CDC::BitBlt(...) in function CGDIView::OnDraw(...). Every time before the bitmap is
painted, the logical palette contained in the document is selected into the target
DC and realized. By doing this, we can avoid color distortion.

Function CGDIView::CleanUp() selects the palette and bitmap out of the DC, then
deletes the memory DC and DIB. It is called from the following two functions: 1) In
CGDIView::OnDestroy() when the application is about to exit. 2) In
CGDIView::LoadBitamp() before new DDB is created.

That's all the features included in sample 11.0\GDI. The application can load a DIB
file from the disk and display it.

11.1 Ratio and Grid

Sample 11.1\GDI is based on sample 11.0\GDI, it implements zoom in and zoom out
commands. Also, when the image is displayed with an enlarged size, the grid can
be turned on.

For a graphic editor, it is desirable that the image can be displayed with different
ratios. Also, When the image is zoomed in, we need to add grid to let the user have

a better view of pixels. These two features are included in almost all the graphic
editors.

We know it is easy to display an image in different ratios. In order to do this, we need
to call function CDC::StretchBlt(...) instead of CDC::BitBlt(...). The only concern here is
that we should let the user select different ratios with mouse clicking, and whenever
the ratio changes, the effect should be shown in the client window at once.

Zoom In & Zoom Out

So we need to add a new variable that can be used to store the current image
ratio. The bitmap image should be drawn in the client window according to the
value of this variable, and the user can change it through mouse clicking. Although
this variable can be included in any of the four classes (Any of CGDIApp,
CFrameWnd, CGDIDoc or CGDIView derived classes), generally we'd like to put the
data in document because this will make the application document centered. For
the application that has only one document and view it doesn't make much
difference where we put this variable. But if an application has more than one
document or view, we should consider this more carefully. For example, suppose we
have two documents opened at the same time, if both documents need to share a
same feature (for example, the ratio change will affect both documents), the
variable needs to be put in the frame window class. If we don't want to affect the
other document when changing the feature of one document (for example, the
ratio change for one document should not affect the ratio of another document),
we should let each document have its own variable.

In the sample application, we use an integer type variable m_nRatio to record the
current ratio. This variable is initialized to 1 in the constructor. A member function
CGDIDoc::GetRatio() is added to let this value be accessible from other classes. To
let the user be able to change the ratio of the image, two buttons are added to
toolbar IDR_MAINFRAME. The IDs of the two buttons are ID_ZOOM_IN and
ID_ZOOM_OUT, one of them lets the user zoom in and the other let the user zoom out
the image.

Both of the two commands have WM_COMMAND and UPDATE_COMMAND_UI
message handlers. The message handlers allow the user to change the current ratio,
which are relatively easy to implement. Within the function, we need to judge if the
current value of ratio will reach the upper or lower limit, if not, we should increment
or decrement the value, and update the client window. For example, function
CGDIDoc::OnZoomIn() is implemented as follows:

(Code omitted)

The lower limit of the ratio value is 1 and the upper limit is 16. Another concern is that
we must also change the scroll sizes of the client window whenever the ratio has

changed (In sample 11.0\GDI, since the image does not change after it is displayed
in the client window, it is enough to just set the scroll sizes according to the image
size after the bitmap is loaded).

To let the scroll sizes be set dynamically, a new member function
CGDIView::UpdateScrollSizes() is added to the application. In this function, the
current ratio value is retrieved and the scroll sizes are set to the zoomed bitmap size.
In the sample, this newly added function is also called in function
CGDIView::OnInitialUpdate() to set the scroll sizes according to the image size
whenever a new bitmap is loaded (The old implementation is elemenated).

Functions CGDIDoc::OnUpdateZoomIn(...) and CGDIDoc::OnUpdateZoomOut(...)
are used to set the state of zoom in and zoom out buttons. We should disable both
commands when there is no bitmap loaded. Besides this, upper and lower limits are
also factors to judge if we should disable either zoom in or zoom out command. For
example, CGDIDoc::OnUpdateZoomIn(...) is implemented as follows:

void CGDIDoc::OnUpdateZoomIn(CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_nRatio < 16 && m_hDIB != NULL);

}

Grid

Grid implementation is similar. Since grid has only two states (it is either on or off), a
Boolean type variable is enough for representing its current state. In the sample, a
Boolean type variable m_bGridOn is added to class CGDIDoc, which is initialized to
FALSE in the constructor. Besides this, an associate function CGDIDoc::GetGridOn() is
added to allow its value be retrieved outside the document. Also, a new button
(whose command ID is ID_GRID) is added to tool bar IDR_MAINFRAME, whose
message handlers are also added through using Class Wizard. The value of
m_bGridOn is toggled between TRUE and FALSE in function CGDIDoc::OnGrid().
Within function CGDIDoc::OnUpdateGrid(...), the button's state (checked or
unchecked) is set to represent the current state of grid:

void CGDIDoc::OnUpdateGrid(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(m_bGridOn == TRUE);

}

We must modify function CGDIView::OnDraw(...) to implement grid. First we need to
check the current value of CGDIDoc::m_bGridOn. If it is TRUE, we should draw both
the image and the grid; if it is FALSE, we need to draw only the image.

We can draw various types of grids, for example, the simplest way to implement grid
would be just drawing parallel horizontal and vertical lines. However, there is a
disadvantage of implementing grid with solid lines. If the image happens to have the
same color with grid lines, the grid will become unable to be seen. An alternate
solution is to draw grid lines using image's complement colors, this can be easily
implemented by calling function CDC::SetROP2(...) and passing R2_NOT to its
parameter before the grid is drawn. However, this type of grid does not have a
uniform color, this makes the image looks a little awkward.

Pattern Brush and Its Origin

The best grid is implemented with alternate colors (for example, black and white),
thus at any time one of the two contiguous grid pixels will always have a different
color with the image pixels under them (When an image is enlarged, one pixel of the
image will become several pixels). We might want to use dashed or dotted lines to
implement this type of grid. However, the alternating frequency of dotted or dashed
lines is not one pixel.

In the sample a pattern brush is used to implement grid. Remember we can use
pattern brush to fill a rectangle with a bitmap pattern. If we limit width and height of
the pattern brush to 1 unit, the filling result will become a straight line (vertical or
horizontal). We can prepare a bitmap with the pattern that any two adjacent pixels
(not diagnal) have different colors, and use it to create the pattern brush (Figure 11-
1).

If we write program for Windows 95, the size of the bitmap for making pattern brush
must be 8(8. In the sample, this image is included in the application as a bitmap
resource, whose ID is IDB_BITMAP_GRID. The variable used for creating pattern brush
is CGDIView::m_brGrid, and the pattern brush will be created in the constructor of
class CGDIView.

In function CGDIView::OnDraw(...), after drawing the bitmap, we must obtain the
value of CGDIDoc::m_bGridOn. If it is true, we will use the pattern brush to draw the
grid. When using pattern brush, we must pay special attention to its origin. By default,
the brush's origin will always be set to (0, 0). This will not cause problem so long as the
client window is not scrolled. However, if scrolled position (either horizontal or
vertical, but not both) happens not to be an even number, we need to adjust the
origin of the pattern brush to let the pattern be drawn started from 1 (horizontal or
vertical coordinate). This is because our pattern repeats every other pixel.

Figure 11-2 demonstrates the two situations. In the left picture, the logical
coordinates of the upper-left pixel of the visible client window are (2, 2). If we draw
the grid starting from the pixel located at the logical coordinates (0, 0), the grid pixel
at (2, 2) should be drawn using dark color (See Figure 11-1). If the client window is
further scrolled one pixel leftward (the right picture of Figure 11-2), the logical
coordinates of the upper-left pixel of the visible client window become (3, 2). In this
situation, it should be drawn using the light color. However, if we do not adjust the
origin of the pattern brush, the system will treat the upper-left visible pixel in the client
window as the origin and draw it using the dark color.

To set pattern brush's origins, we need to call the following two functions before
selecting brush into the DC:

BOOL CGDIObject::UnrealizeObject();

CPoint CDC::SetBrushOrg(int x, int y);

In the second function, x and y specify the new origin of the pattern brush.

In the sample, the brush origin is set according to the current scrolled positions. The
following code fragment shows how the origin is adjusted in function
CGDIView::OnDraw(...):

(Code omitted)

Here m_brGrid is a CBrush type variable that is used to implement the pattern brush,
pt is a POINT type variable whose value is retrieved by calling function
CScrollView::GetScrollPosition().

Drawing horizontal grid lines and vertical grid lines are implemented separately. We
use two loops to draw different types of lines. Within each loop, function
CDC::PatBlt(...) is called to draw one grid line. The following code fragment shows
how the horizontal grid lines are drawn in the sample application:

(Code omitted)

The height of line is set to 1, so the actual result will be a pattern line.

11.2 Color Selection

Sample 11.2\GDI is based on sample 11.1\GDI. In this sample, a "Color Bar" is
implemented, it allows the user to select current color from a series of colors (Figure
11-3).

When the user is editing the image, both foreground and background color need to
be set. The foreground color will be used to draw line, curve, arc, or the border of
rectangle, ellipse, polygon, etc. The background color will be used to fill the interior
of rectangle, ellipse and polygon. In the sample, the user can left click on any color
contained in the color bar to select a foreground color, and right click on any color
to select a background color.

We know that this feature is similar to that of standard graphic editor "Paint". In "Paint"
application, color bar is docked to the top or bottom border of the mainframe
window. There are two rows of colors that can be selected for drawing. The user can
use left and right mouse buttons to select foreground and background colors,
double click on any color to customize it.

We need to recollect some old knowledge from chapter 1 through chapter 4 in
order to implement the color bar.

Color Selection Control

First, the color bar should be implemented by dialog bar. This will allow it to be
docked or floated, and we can include any type of common controls very easily.
Second, we need to decide what type of control is needed for implementing the
color selection controls.

The color selection control should have the following features: 1) It can respond to
mouse clicking events (Left and right clicking, also, the double clicking). 2) The
surface of the control should be painted with the color it represents.

There are many ways to implement this control. One solution is to use owner-draw
button. Remember if we set a button's style to "Owner draw", when the button needs
to be updated, its parent window will call function CBitmapButton::DrawItem(...). We
can override this member function and paint the surface of the button with the color
it is representing. The advantage of this method is that by doing this, all the buttons
will be instances of the same class, and the same member function will be called to
draw every button. In this case, it is relatively easy to add or delete such type of
buttons without having to rewrite the code for drawing every single button. Imagine
if we handle button drawing in the parent window, we have to calculate the
position and size of each button whenever it needs to be redrawn.

In the sample, a dialog box template with ID of IDD_DIALOG_COLORBAR is added to
the application. There are altogether twenty-one owner-draw buttons. Among
them, one button will be used to display currently selected foreground and
background colors, the rest buttons will be used for displaying colors contained in
the logical palette.

We must create new classes for the controls contained in the dialog bar. In the

sample, class CColorButton and CFBButton are added for this purpose. Both of them
are derived from the class CBitmapButton, also, both of them override function
CBitmapButton::DrawItem(...). Please note that instead of handling message
WM_DRAWITEM in the derived classes, we must override
CBitmapButton::DrawItem(...) to customize the appearance of button. This is
because message WM_DRAWITEM will not be routed to derived classes (Only the
base class will receive this message, in which case default function
CBitmapButton::DrawItem(...) will be called). If we do not override this function, we
will not be notified when buttons need to be updated.

Since this sample is supposed to be used for palette device (Of course, it can be run
on a non-palette device), we will let each button display a color contained in a
different entry of the logical palette. In order to do this, we should let different button
have a different index that represents a different entry of the logical palette. For this
purpose, a variable m_nPalIndex and two functions (GetPaletteIndex() and
SetPaletteIndex(...)) are added to class CColorButton. In function
CColorButton::DrawItem(...), this value is used as the index to the application's
logical palette for button drawing:

(Code omitted)

We use macro PALETTEINDEX to retrieve the actual color contained in the palette
entry. As usual, before doing any drawing, we have to select the logical palette into
the DC and realize it.

Class CFBButton is similar. Two variables m_BgdIndex and m_FgdIndex are added to
class CGDIDoc representing the currently selected foreground and background
colors. Their values can be retrieved and set through calling functions
CGDIDoc::GetBgdIndex(), CGDIDoc::GetFgdIndex(), CGDIDoc:: SetBgdIndex(...),
CGDIDoc::SetFgdIndex(...). Two variables are declared in the document class
instead of color bar class because their values may need to be accessed from the
view. Since the document is the center of the application, we should put the
variables in the document so that they can be easily accessed from other classes.

Function CFBButton::Drawitem(...) implements drawing a rectangle filled with current
background color overlapped by another rectangle filled with current foreground
color. Like class CColorButton, the color is retrieved from the logical palette
contained in the document. The following code fragment shows how the
background rectangle is drawn:

(Code omitted)

Variable nBgdIndex is an index to the logical palette, the whole area that needs to
be painted is specified by lpDrawItemStruct->rcItem (lpDrawItemStruct is the pointer
passed to function DrawItem(...)). When drawing the rectangle, we see that a

margin of 2 is left first (This is done through calling function CRect:: InflateRect(...)),
then the width and height of the rectangle are set to 3/4 of their original values. The
foreground rectangle has the same dimension, but overlaps the background
rectangle. To add more fluff to the application, the border of both rectangles has a
3D effect, which is implemented by calling function CDC::DrawEdge(...).

Color Bar

To implement color bar, a new class derived from CDialogBar is added to the
application. This class is named CColorBar. To let the buttons act as color selection
controls, we need to implement subclass for all the owner-draw buttons. In the
sample, function CColorBar::InitButtons() is added to initialize the indices of all the
buttons and implement subclass. Also, function CDialogBar::Create(...) is overridden,
within which CColorBar::InitButtons() is called to change the default properties of the
buttons. The following is the implementation of function CColorBar::InitButtons():

(Code omitted)

Please note that in the sample, the first color button's ID is IDC_BUTTON_COLOR1,
and the IDs of all the color buttons are consecutive. This may simplify message
mapping.

Color Selection

Another feature implemented in the sample application is that the user may set
foreground and background colors by left/right mouse clicking on a color selection
control. Also, the color of the color selection control may be customized by double
clicking on the button. Since the messages related to mouse events will not be
routed to the child window of dialog box (We can treat dialog bar as a dialog box),
they are handled in base class CColorBar. In the sample, functions
CColorBar::OnLButtonDown(...), CColorBar::OnRButtonDown(...) and
CColorBar::OnLButtonDblClk(...) are implemented to handle mouse clicking
messages. In the first two functions, first the foreground or background palette index
contained in the document is set to a new value according to which button is
clicked, then the button being clicked is updated. In the third function, a color
dialog box is implemented, if the user selects a new color, we will use it to fill the
corresponding entry of the logical palette, then update all the color buttons.

Integrate the Color Bar into the Program

Finally, the color bar is created in function CMainFrame::OnCreate(...). The variable
that is used to implement the color bar is CMainFrame::m_wndColorBar. Within this
function, CColorBar::Create(...) is called to create the color bar and
CControlBar::EnableDocking(...) is called to dock the color bar. The color bar can be
either floated or docked to any border of the mainframe window.

11.3 Simple Drawing

Sample 11.3\GDI is based on sample 11.2\GDI.

The new application implemented in this section supports two most basic editing
functions: dot drawing and line drawing. Remember we have implemented some
basic interactive drawings in chapter 9, but the implementation here is slightly
different. As the user draw a dot or line, besides updating the client window, we also
need to update the new drawings to the bitmap, so when it is saved to the disk, the
data will always be up-to-date. Also, since the bitmap image can be displayed in
different ratios in a scrolled window, we must map the mouse position from the
coordinate system of the client window to the coordinate system of the bitmap
image (1:1 ratio) in order to update the new pixel. Still, we also need to support
cursor shape changing: when the mouse is within the bitmap area, it is more
desirable to change the shape of the cursor to represent the current drawing tool.

New Tool Bar

A new tool bar is implemented in the sample that allows the user to select drawing
tool. The ID of the tool bar is IDR_DRAWTOOLBAR, and there are two buttons
included in the tool bar: ID_BUTTON_PEN and ID_BUTTON_LINE. The two tools can be
used for drawing dot and line respectively.

A new variable m_nCurrentTool is declared in class CGDIDoc. It will be used to
indicate the current drawing tool. In the sample, WM_COMMAND and
UPDATE_COMMAND_UI messages for both ID_BUTTON_PEN and ID_BUTTON_LINE are
handled in the following two functions respectively (New drawing tools added in the
following sections will also be handled here):

void CGDIDoc::OnDrawTool(UINT nID)

{

m_nCurrentTool=nID-ID_BUTTON_PEN;

}

void CGDIDoc::OnUpdateDrawTool(CCmdUI *pCmdUI)

{

pCmdUI->SetCheck((UINT)m_nCurrentTool+ID_BUTTON_PEN == pCmdUI->m_nID);

}

With this implementation, at any time, only one tool can be selected. The currently
selected tool is indicated by variable CGDIDoc::m_nCurrentTool.

New Functions

The implementation of drawing is complex. We must handle different mouse events,
do the coordinates conversion, update the bitmap image according to mouse
activity and current drawing tool, and update the client window. It is important to
break this whole procedure down into small modules, so the entire drawing task can
be implemented by calling just several module functions.

It is obvious that both dot drawing and line drawing should be implemented by
handling three mouse related messages: WM_LBUTTONDOWN, WM_RBUTTONDOWN
and WM_MOUSEMOVE. There is one thing that must be done before doing any dot
or line drawing: converting the current mouse position from the coordinate system of
the client window to the coordinate system of the bitmap image (The current ratio
and scrolled position must also be taken into consideration). For dot drawing, we
need a function that can draw a dot on the bitmap using current foreground color.
This function will also be called for line drawing because after the left button is
pressed and the mouse has not been moved, we need to draw a dot first. Also, we
need a function that can draw a straight line on the bitmap image using the current
foreground color if the starting and ending points are known.

There are some concerns with the line drawing. When the user clicks the left button,
we need to draw a dot at this position and set the beginning point of the line to it. As
the user moves the mouse (with left button held down), we should draw temporary
lines until the left button is released. Before the button is released, every time the
mouse is moved, we need to erase the previous line and draw a new one. Although
this can be easily implemented by using XOR drawing mode, it is not the only
solution. An alternate way is to back up the current bitmap image before drawing
any temporary line. If we want to erase the temporary drawings, we can just restore
the bitmap image backed up before.

In the sample application of this section, several new functions are added to
implement dot and line drawings. These functions are listed as follows:

CPoint CGDIView::NormalizePtPosition(CPoint pt);

The parameter of this function is the mouse cursor position that is measured in the
coordinate system of the client window. It will be normalized to the coordinate
system of the bitmap image. If the current ratio is greater than 1, the position will be
divided by the current ratio. If any of the scroll bars is scrolled, the scrolled position
will also be deducted.

void CGDIView::DrawPoint(CPoint pt);

This function draws a dot on the bitmap with current foreground color, which is
stored in the document. The input parameter must be a normalized point.

void CGDIView::DrawLine(CPoint ptStart, CPoint ptEnd);

This function draws a line on the bitmap from point ptStart to ptend using the current
foreground color, which is stored in the document. The input parameters must be
normalized points.

void CGDIView::BackupCurrentBmp();

For the purpose of backing up the current bitmap, a new CBitmap type variable
m_bmpBackup is declared in class CGDIView. When function
CGDIView::BackupCurrentBmp() is called, we create a new bitmap and attaches it
to m_bmpBackup then initialize the bitmap with the current bitmap image
(CGDIView:: m_bmpDraw).

void CGDIView::ResumeBackupBmp();

This function does the opposite of the previous function, it copies the bitmap stored
in CGDIView:: m_bmpBackup to CGDIView::m_bmpDraw.

With the above new functions, we are able to implement dot and line drawing. To
implement interactive line drawing, another new variable m_ptMouseDown is
declared in class CGDIView. This variable is used to record the position of mouse
cursor when its left button is being pressed down. As the mouse moves or the left
button is released, we can use it along with the new mouse position to draw a
straight line. The following is the implementation of WM_LBUTTONDOWN message
handler:

(Code omitted)

After left button of the mouse is pressed down, we must set window capture in order
to receive mouse messages even when the cursor is not within the client window.
The window capture is released when the left button is released. If the current
drawing object is dot, we need to call function CGDIView:: DrawPoint(...) to draw
the dot at the current mouse position; if the current drawing object is line, we need
to first backup the current bitmap then draw a dot at the current mouse position.

For WM_MOUSEMOVE message, first we must check if the left button is being held
down. If so, we can further proceed to implement drawing. For dot drawing, we
need to draw a new dot at the current mouse position by calling function
CGDIView::DrawPoint(...); for line drawing, we need to first erase the old drawings by

copying the backup bitmap to CGDIView::m_bmpDraw, then draw a new line:

(Code omitted)

The implementation of WM_LBUTTONUP message handler is almost the same with
that of WM_MOUSEMOVE message handler: for dot drawing, a new dot is drawn at
the current mouse position by calling function CGDIView::DrawPoint(...). For line
drawing, the backup bitmap is first resumed to CGDIView::m_bmpdraw. Then a new
line is drawn between points represented by CGDIView::m_ptMouseDown and
current mouse position.

Mouse Cursor

It is desirable to change the shape of mouse cursor when it is within the bitmap
image. We can either choose a standard mouse cursor or design our own cursor. A
standard cursor can be loaded by calling function
CWinApp::LoadStandardCursor(...). There are many standard cursors that can be
used in the application, which include beam cursor (IDC_IBEAM), cross cursor
(IDC_CROSS), etc. The mouse cursor can be changed by handling WM_SETCURSOR
message. In this message handler, we can call ::SetCursor(...) to change the current
cursor shape if we do not want the default arrow cursor.

We need another function to judge if the current mouse cursor is within the bitmap
image contained in the client window. In the sample, function
CGDIView::MouseWithinBitmap() is added for this purpose. The current image ratio
and scrolled positions are all taken into consideration when doing the calculation.
The following is the implementation of this function:

(Code omitted)

First we retrieve the current image ratio, horizontal and vertical scrolled positions of
the client window. Then function ::GetCursorPos(...) is called to obtain the current
position of mouse cursor. Because the returned value of this function (a POINT type
value) is measured in the coordinate system of the desktop window (whole screen),
we need to convert it to the coordinate system of the client window before judging
if the cursor is within the bitmap image. Next, the image rectangle is stored in
variable rectBmp, and function CRect::PtInRect(...) is called to make the judgment.

This function is called in WM_SETCURSOR message handler. The following is the
implementation of the corresponding function:

(Code omitted)

If the cursor is within the bitmap image and is over neither the horizontal scroll bar
nor the vertical scroll bar, we set the cursor to IDC_CROSS (a standard cursor).

Otherwise by calling the default implementation of function OnSetCursor(...), the
cursor will be set to the default arrow cursor.

11.4 Tracker

Sample 11.4\GDI is based on sample 11.3\GDI.

Tracker can be implemented to let the user select a rectangular area very easily,
and is widely used in applications supporting OLE to provide a graphical interface
that lets the user interact with OLE client items. When implementing a tracker, we
can select different styles. This can let the tracker be displayed with a variety of
visual effects such as hatched borders, resize handles, etc.

Tracker can also be applied to any normal application. In a graphic editor, tracker
can be used to select a rectangular region, move and drop it anywhere within the
image. It can also be used to indicate the selected rectangular area when we
implement cut, copy and paste commands (Figure 11-4).

Implementing Tracker

Tracker is supported by MFC class CRectTracker. To enable a rectangular tracker,
we need to first use this class to declare a variable, then set its style. When the
window owns the tracker is being painted, we need to call a member function of
CRectTracker to draw the tracker.

We can set the tracker to different styles. The style of tracker is specified by variable
CRectTracker:: m_nStyle. The following values are defined in class CRectTracker and
can be used to specify the border styles of a tracker: CRectTracker::solidLine,
CRectTracker::dottedLine, CRectTracker:: hatchedBorder. The following values can
also be assigned to CRectTracker::m_nStyle to specify how the tracker can be
resized: CRectTracker::resizeInside, CRectTracker::resizeOutside. Finally,
CRectTracker::hatchInside can be assigned to CRectTracker::m_nStyle to specify if
the hatched border should be drawn outside or inside the rectangle. All the above
styles can be combined together using bit-wise OR operation.

Moving and Resizing Tracker

The tracker's position and dimension are stored in variable CRectTracker::m_rect. We
can modify it at any time to move the tracker or resize it. If this variable specifies a
valid rectangle, we can draw the tracker by calling function CRectTracker::Draw(...)
and display it in a window.

To let user resize the tracker through clicking and dragging tracker's resizing buttons
(See Figure 11-4), we need to handle WM_LBUTTONDOWN message and call
function CRectTracker::HitTest(...) to find out if the current mouse cursor hits any

portion of the tracker. The following is the format of this function:

int CRectTracker::HitTest(CPoint point);

The following is a list of values that can be returned from this function along their
meanings:

(Table omitted)

If mouse cursor hits any of the resize buttons, we can call CRectTracker::Track() to
track the mouse moving activities from now on until the left button is released. With
this function, there is no need for us to handle other two messages
WM_MOUSEMOVE and WM_LBUTTONUP, because once it is called, the function will
not return until the left button is released. Of course, we can also write code to
implement right button tracking. When we call function CRectTrack::Track(), the
tracker's owner window should not set window capture, otherwise the mouse
message will not be routed to the tracker.

Customizing Cursor Shape

To let the mouse cursor shape change automatically when it is over tracker's region,
we need to call function CRectTracker::SetCursor(...) inside window's
CWnd::OnSetCursor(...) function (in the window that contains the tracker). If the
function returns TRUE, it means that the cursor shape has already been customized
(The cursor is over tracker's region). In this case we can exit and return a TRUE value.
Otherwise we must call function CWnd::OnSetCursor(...) to let the cursor's shape be
set to the default one.

New Tool

In the new sample application, a new tool "Rectangular Selection" is implemented in
tool bar IDR_DRAWTOOLBAR (Figure 11-5). If it is selected as the current tool, the user
can drag the mouse to create a tracker over the image, resize or move it to change
the selection. The cursor will be automatically changed if the mouse cursor is within
the tracker's region.

First, a new command ID_BUTTON_RECSEL is added to IDR_DRAWTOOL tool bar. Each
time a new tool command is added to the tool bar, we must make sure that the IDs
of all the commands contained in the tool bar are consecutive. Otherwise the
macros ON_COMMAND_RANGE and ON_UPDATE_COMMAND_UI_RANGE will not
work correctly. In the sample, two macros TOOL_HEAD_ID and TOOL_TAIL_ID are
defined, and they represent the first and last IDs of the commands contained in the
drawing tool bar. We use the above two macros to do the message mapping. By
doing this, if we add a new tool next time, all we need to do is redefining the
macros.

In class CGDIView, a CRectTracker type variable m_trackerSel is declared to
implement the tracker. The tracker's styles are initialized in the constructor as follows:

(Code omitted)

The tracker's border is formed by dotted line and the resize buttons are located
outside the rectangle.

The tracker is drawn in function CGDIView::OnDraw(...) if the tracker rectangle is not
empty:

(Code omitted)

As we will see, the tracker's size and position will be recorded in the zoomed bitmap
image's coordinate system. This is for the convenience of coordinate conversion.
Since the DC will draw the tracker in client window's coordinate system, we must
add some offset to the tracker rectangle before it is drawn. Also we need to resume
rectangle's original state after the drawing is completed.

Function CGDIView::OnSetCursor(...) is modified as follows so that the cursor will be
automatically changed if it is over the tracker region:

(Code omitted)

Here we first check if the cursor can be set automatically. If
CRectTracker::SetCursor(...) returns TRUE, we can exit and return a TRUE value (If this
function returns TRUE, it means currently the mouse cursor is within the tracker region,
and the cursor is customized by the tracker). If not, we check if the mouse is over the
bitmap image, if so, the cursor's shape is set to IDC_CROSS and the function exits
(We need to return TRUE every time the cursor has been customized). If all these fail,
we need to call function CWnd::SetCursor(...) to set the cursor to the default shape.

If Mouse Clicking Doesn't Hit the Tracker

We must implement a way of letting the user create tracker interactively. Like line
drawing implementations, we need to handle WM_LBUTTONDOWN,
WM_RBUTTONDOWN and WM_MOUSEMOVE messages in order to let the user create
tracker by mouse clicking. This procedure is similar to rectangle drawing: when left
button is pressed down, we need to record the current mouse position as the starting
point; as the mouse is dragged around, we draw a series of temporary rectangles;
when the left button is released, we use the current mouse position as the ending
point and use it along with the starting point to draw the tracker.

For the tracker, there are two possibilities when the mouse button is pressed down. If

currently there is an existing tracker and the mouse hits the tracker, we should let the
tracker be moved or resized instead of creating a new tracker. If there is no tracker
currently implemented or the mouse did not hit the existing tracker, we should start
creating a new tracker.

This situation can be judged by calling function CTracker::HitTest(...), whose input
parameter should be set to the current position of mouse cursor that is measured in
the client window's coordinate system. If the function returns
CRectTracker::hitNothing, either there is no existing tracker or the mouse didn't hit
any portion of the tracker. In the sample, this situation is handled as follows:

(Code omitted)

We record the starting position in the upper-left point of the tracker rectangle. As the
mouse moves, the rectangle's bottom-right point is updated with the current mouse
position, and temporary rectangles are drawn and erased before the tracker is
finally fixed.

Temporary rectangles are drawn by calling function CDC::DrawFocusRect(...).
Because this function uses XOR drawing mode, it is easy to erase the previous
rectangle by simply calling the function twice.

When the left button is released, we erase the previous temporary rectangle if
necessary, update the tracker rectangle, and call function CWnd::InValidate() to let
the tracker be updated (along with the client window).

Because we must keep track of mouse cursor position after its left button is pressed
down, the window capture must be set when a new tracker is being created. Since
we share the code implemented for dot and line drawing here, there is no need to
add extra code to set window capture for the client window here.

If Mouse Clicking Hits the Tracker

If mouse clicking hits the tracker (any of the resize buttons, or the middle of the
tracker), we must implement tracking to let the user resize or move the existing
tracker. This can be easily implemented by calling function CRectTracker::Track():

(Code omitted)

Because the window capture is set when a new tracker is being created (also, when
a dot or a line is being drawn), we must first release the capture before trackering
mouse movement (Otherwise the tracker will not be able to receive messages
related to mouse moving events). There is no need for us to handle
WM_MOUSEMOVE and WM_LBUTTONUP messages here because after function
CRectTracker::Track() is called, mouse moving events will all be routed to the

tracker. After this function exits, variable CRectTracker::m_rect will be automatically
updated to represent the new size and position of the tracker. So after calling this
function, we can update the client window directly to redraw the tracker.

11.5 Moving the Selected Image

Sample 11.5\GDI is based on sample 11.4\GDI. It is implemented with a new feature:
when a portion of the bitmap is selected by the tracker, the user can move the
selected image by dragging the tracker to another place; if the user resizes the
tracker, the selected image will also be stretched.

Normalizing Tracker

Since the tracker rectangle is recorded in the zoomed image's coordinate system,
we must first convert it back to the original bitmap's own coordinate system (the
image with 1:1 ratio) in order to find out which part of the image is being selected. In
the sample, function CGDIView::NormalizeTrackerRect(...) is added for this purpose.
In this function, the current image ratio is retrieved from the document, and the four
points of the tracker rectangle is divided by this ratio. The tracker can be created in
two different ways. For example, the user may click and hold the left mouse button
and drag it right-and-downward; also, the mouse may be dragged up-and-leftward.
For the first situation, a normal rectangle will be formed, in which case member
CRectTracker.m_rect.left is always less than member CRectTracker.m_rect.right, and
CRectTracker.m_rect.top is less than CRectTracker::m_rect.bottom. However, in the
second situation, CRectTracker.m_rect.left and CRectTracker.m_rect.top are all
grater than their corresponding variables. So before using variable
CRectTracker::m_rect, we must normalize the rectangle.

We can call function CRect::NormalizeRect() to normalize a rectangle implemented
by class CRect. In function CGDIView::NormailizeTrackerRect(...), before the four
points of the tracker rectangle are divided by the ratio, this function is called to first
normalize the rectangle.

Moving and Resizing the Selected Image

The easiest way to move or resize the selected image is to back up the image that is
under the current tracker, as the user resizes the tracker, copy the backup image
back and let it fit within the new tracker. When doing this copy, we can call function
CDC::StretchBlt(...) to resize the copied image.

The procedure of backing up the selected image is similar to backing up the whole
image as we did in function CGDIView::BackupCurrentBmp(). The size of the backup
image must be the same with the size of tracker rectangle. One thing we need to
pay attention to is that since we allow the user to resize and move the tracker freely,
it is possible that after moving or resizing, some part of the tracker is outside the

image. In this case, we must recalculate the backup area so that only the
intersection of the tracker and the image will be copied. The non-intersection part
should be left blank. For this purpose, before copying the selected image, we need
to fill all the backup bitmap with the current background color.

Variable CGDIView::m_bmpSelBackup is declared in the application to backup the
selected area.

Besides backing up the selected area, we need another function to copy the
backup image back to the original bitmap. In the sample, function
CGDIView::StretchCopySelection() is added for this purpose. Within it, function
CDC::StretchBlt(...) is called to copy the selection back to the bitmap, the position
and dimension of the current tracker rectangle are used to specify the target
image. Whenever we want to move or resize the selected image, we can first move
or resize the tracker rectangle then call this function.

When Left Button is Up

We need to back up the selected image after the tracker is created. This
corresponds to the left button release event (Also, the current drawing tool must be
"Rectangular Selection"). Besides the selected region, we also need to backup the
whole bitmap. This is because when the user moves the tracker, we must copy the
backup image back to the original bitmap (before the selection is moved) instead
of the current one. Otherwise as the selection is moved around, it will leave a trail on
the image. So within WM_LBUTTONUP message handler, both
CGDIView::BackupCurrentBmp() and CGDIView::BackupSelection() are called to
implement the backup:

(Code omitted)

The selection should be copied back within WM_LBUTTONDOWN message handler
after function CRectTracker::Track() is called. By using this function, the tracker
rectangle can be automatically updated when the mouse button is released. In the
sample, functions CGDIView::ResumeBackupBmp() and
CGDIView::StretchCopySelection() are called to copy the selected image back to
the original bitmap:

(Code omitted)

With the above implementations, we are able to select the image using
"Rectangular Selection" tool, then move or resize it.

11.6 Region

Before implementing new drawing tools, we need to introduce some new concepts.

In this and following sections, we will discuss region and path, both of which are GDI
objects. The implementation of simple "Paint" will be resumed in section 11.8.

Basics

Region is another very useful GDI object. We can use region to confine DC drawings
within a specified area no matter where the DC actually outputs. After a specified
region is specified, all DC's outputs (dot and line drawing, brush fill, bitmap copy) will
be confined within the region area. By using the region, it is very easy for us to draw
objects with irregular shapes.

A region can have any type of shapes. It can be rectangular, elliptical, polygonal or
any irregular closed shape. Moreover, a region can be created by combining two
existing regions, the result can be the union, the intersection or difference of the two
regions. With these operations, we can create regions with a wide variety of shapes.

Region Creation

In MFC, region is implemented by class CRgn. Like other GID objects, this class is
derived from CGDIObject, which means a valid region must be associated with a
valid handle. Standard regions can be created by calling one of the following
functions:

BOOL CRgn::CreateRectRgn(int x1, int y1, int x2, int y2);

BOOL CRgn::CreateRectRgnIndirect(LPCRECT lpRect);

BOOL CRgn::CreateEllipticRgn(int x1, int y1, int x2, int y2);

BOOL CRgn::CreateEllipticRgnIndirect(LPCRECT lpRect);

BOOL CRgn::CreatePolygonRgn(LPPOINT lpPoints, int nCount, int nMode);

BOOL CRgn::CreatePolyPolygonRgn

(

LPPOINT lpPoints, LPINT lpPolyCounts, int nCount, int nPolyFillMode

);

BOOL CRgn::CreateRoundRectRgn(int x1, int y1, int x2, int y2, int x3, int y3);

As we can see, a region may have different shapes: rectangular, elliptical,

polygonal. We can even create a region that is composed of a series of polygons by
calling function CRgn:: CreatePolyPolygonRgn(...). As we will see later, a region can
also have an irregular shape.

Existing regions can be combined together to form a new region. The combining
operation mode can be logical AND, OR, XOR, the union or the difference of the
two regions. The function that can be used to combine two existing regions is:

int CRgn::CombineRgn(CRgn* pRgn1, CRgn* pRgn2, int nCombineMode);

Please note that CRgn type pointers passed to this function must point to region
objects that have been initialized by one of the functions mentioned above, or by
other indirect region creating functions. Parameter nCombineMode can be set to
any of RGN_AND, RGN_COPY, RGN_DIFF, RGN_OR and RGN_XOR, which specify
how to combine the two regions.

Using Region

Like any other GDI object, before using the region, we must first select it into the DC.
The difference between using region and other GDI objects is that we need to call
function CDC::SelectClipRgn(...) to select the region instead of calling function
CDC::SelectObject(...).

Function CDC::SelectClipRgn(...) has two versions:

virtual int CRgn::SelectClipRgn(CRgn* pRgn);

int CRgn::SelectClipRgn(CRgn* pRgn, int nMode);

For the second version of this function, parameter nMode specifies how to combine
the new region with the region being currently selected by the DC. Again, it can be
set to any of the following flags: RGN_AND, RGN_COPY, RGN_DIFF, RGN_OR and
RGN_XOR.

After using the region, we must select it out of the DC before deleting it. To select a
region out of the DC, we can call function CDC::SelectClipRgn(...) and pass a NULL
pointer to it. For example, the following statement selects the region out of DC
(pointed by pDC):

pDC->SelectClipRgn(NULL);

A region can be deleted by calling function CGDIObject::DeleteObject(). Also, the
destructor of CRgn will call this function automatically, so usually there is no need to
delete the region unless we want to reinitialize it.

Sample

Sample 11.6\GDI is a standard SDI application generated by Application Wizard. In
the sample, two variables are declared in class CGDIView: CGDIView::m_rgnRect
and CGDIView::m_rgnEllipse. They will be used to create two regions, one is
rectangular and one is elliptical. The two regions will be combined together to
create a new region that is the difference of the two. We will select this region into
the client window's DC, and output text to the whole window. As we will see, only
the area that is within the region will have the text output.

The regions are created in the constructor of class CGDIView:

(Code omitted)

The final region will look like the shaded area shown in Figure 11-6.

In function CGDIView::OnDraw(...), string "Clip Region" is output repeatedly until all
the client window is covered by this text:

(Code omitted)

The output result is shown in Figure 11-7.

11.7 Path

Basics

Path is another type of powerful GDI object that can be used together with device
context. A path can be seen as a closed figure that is formed by drawing trails. For
example, Figure 11-8 shows a path that is made up of alternative lines and curves.

A path can record almost all types of outputs to the device context. Like other GDI
objects, it must be first selected into a DC before being used. However, there is no
class such as CPath that lets us declare a path type variable. Therefore, we can not
select a path into DC by calling function CDC:: SelectObject(...). To use path, we
must call function CDC::BeginPath() to start path recording and call CDC::EndPath()
to end it.

Between the above two functions, we can call any of the drawing functions such as
CDC::LineTo(...), CDC::Rectangle(...), and CDC::TextOut(...). The trace of the output
will be recorded in the path and can be rendered later. When rendering the
recorded path, we can either draw only the outline of the path using the selected
pen or fill the interior with the selected brush, or we can do both.

The following functions can be used to implement these path drawing:

BOOL CDC::StrokePath();

BOOL CDC::FillPath();

BOOL CDC::StrokeAndFillPath();

Function CDC::StrokePath() will render a specific path using the currently selected
pen. This will draw outline of the closed figure. Function CDC::FillPath() will close any
open figures in the path and fill its interior using the currently selected brush. After the
interior is filled, the path will be discarded from the device context. Function
CDC::StrokeAndFillPath() implements both: it will stroke the outline of the path and fill
the interior.

Please note that the last function can not be replaced by calling the first two
functions consecutively. After function CDC::StrokePath() is called, the path will be
discarded, so further calling CDC::FillPath() will not have any effect.

Path & Region

Region can also be created from path. One straightforward method is to call
function CDC:: SelectClipPath(...) to create a region from the current path then
select it into the DC. If we create region this way, there is no need for us to use CRgn
type variable. Also, we can explicitly create a region from the path by calling
function CRgn::CreateFromPath(...). The parameter we need to pass to this function
is a pointer to the DC that contains the path. This is a very powerful method: by
creating an irregular-shaped path, we can use it to create a region that can be
used to confine the output of DC.

Sample 11.7-1\GDI

Sample 11.7-1\GDI demonstrates path implementation. It is a standard SDI
application generated by Application Wizard. No new variable is declared. In
function CGDIView::OnDraw(...), we begin path recording and output four
characters 'P', 'a', 't', 'h' to the client window. Then we stroke the outlines of the four
characters and fill the path with a hatched brush.

In the sample, the font used to output the text is "Times New Roman", and its height is
400. The brush used to fill the interior of the path is a hatched brush whose pattern is
cross hatch at 45 degrees. Between function CDC::BeginPath() and CDC::EndPath(),
there is only one statement that calls function CDC::TextOut(...) to output the four
characters. Please note that while path recording is undergoing, no output will be
generated to the target device. So this will not output anything to the client window.
Finally function CDC::StrokeAndFillPath() is called to stroke the text outline and fill the

path's interior using hatched brush. The following is the implementation of function
CGDIView::OnDraw(...):

(Code omitted)

Figure 11-9 shows the output result.

(Figure 11-9 omitted)

Obtaining Path

A path can be retrieved by calling function CDC::GetPath(...). This function has
three parameters, first two of which are pointers that will be used to receive path
data, and the final parameter specifies how many points are included in the path:

int CDC::GetPath(LPPOINT lpPoints, LPBYTE lpTypes, int nCount);

A path is formed by a series of points and different type of curves. The points are
stored in the buffers pointed by lpPoints, and curve types are stored in the buffers
pointed by lpTypes, which can be any of the following: PT_MOVETO, PT_LINETO,
PT_BEZIERTO or PT_CLOSEFIGURE.

To receive path information, we must first allocate enough buffers for storing point
and type information. Since the buffer size depends on the number of points
included in the path, when calling function CDC::GetPath(...), we can first pass NULL
pointer to lpPoints and lpTypes parameters and 0 to nCount. This will cause the
function to return the number of points included in the path. After enough buffers
are allocated for storing both point and type information, we can call
CDC::GetPath(...) again to get the path.

Since path stores drawing trace in the form of vectors, we can change the shape of
a path by moving the control points without losing quality of the image. We can
change the positions of the points using certain algorithm. For example, if we
multiply the vertical coordinate of all points with a constant factor, the result will be
an enlarged image scaled from the original path.

Sample 11.7-2\GDI

Sample 11.7-2\GDI demonstrates how to obtain and modify a path. It is based on
sample 11.7-1\GDI. In the sample, after text "Path" is output to the device context
(which is recorded into path), function CDC::GetPath(...) is called to retrieve the
points and curve types into the allocated buffers. Then, we change the y
coordinates of all points by linearly moving them upward. The following code
fragment of function CGDIView::OnDraw(...) shows how the buffers are allocated
and path is obtained:

(Code omitted)

The total number of points is stored in variable nNumPts. Because we need to use a
POINT type array to receive the points, the buffer size for storing points is calculated
as follows:

(number of points) * (size of structure POINT)

Since a curve type uses only one byte, the buffer size for storing curve types is
nNumPts.

The following portion of function CGDIView::OnDraw(...) shows how the points are
moved:

(Code omitted)

The following formulae is used to move a point upward:

new vertical coordinate =

(original vertical coordinate) (

Then a new path is created from new points:

(Code omitted)

For a different type of curves, we call the corresponding CDC member function.
Please note that since Bezier curve uses three points, after drawing the Bezier curve,
we need to advance the loop index by 2.

After this, function CDC::StrokeAndFillPath(...) is called to stroke the path's outline
and fill the interior. Figure 11-10 shows the effect.

11.8 Freeform Selection

Now its time to go back to our simple graphic editor. If we are familiar with the
actual "Paint" application, we know that it allows the user to select an irregular part
of the image, move it, and resize it. This freeform selection tool can be implemented
by using path and region together.

Implementation

The freeform selection tool has a lot in common with the rectangular selection tool:

both need to respond to mouse events for specifying a selected region; both need
to implement a tracker to allow the user to move and resize the selected image;
both need to back up the selected portion of the bitmap. The only difference is that
for the freeform selection, the selected region may not be rectangular.

However, we can still make use of functions CGDIView::BackupSelection() and
CGDIView:: StretchCopySelection(). Since we can store the irregular selection in a
CRgn type variable, it doesn't matter if the backup area is rectangular or not. If we
select the region into the DC before copying the rectangular backup image, only
the pixels within the region will be copied.

The region can be created from path. As the user presses the left button, if the
current drawing tool is freeform selection, we will start path recording. After the left
button is released, the path recording will be stopped and the irregular region will be
created from the path. To allow the user to resize or move this region, we must
enable tracker and backup the selected area at this point.

Although the selection can be an irregular area, the tracker must be rectangular.
We can set the tracker rectangle to the bounding rectangle of the region, which
can be obtained by calling function CRgn:: GetRgnBox(...). If the user changes the
tracker, we must copy this region to a new position and resize it to let the region fit
within the rectangle which is indicated by the new tracker.

Scaling Region

There is a problem here: the recorded region was created when the user first made
the selection. After the tracker is moved or resized, we must offset and scale the
original region to let it fit within the new tracker rectangle before selecting it into the
target DC. Please note that in order to confine DC drawings within a region, we must
use the target DC to select the region. Thus the problem is how to offset and scale
the region to let it fit within another rectangle without losing its original shape.

Unlike path, region is not recorded using vectors. Instead, it is made up of a number
of rectangles. We need to resize every rectangle in order to resize the whole region
(Figure 11-11).

Just like we can retrieve path data by calling function CDC::GetPath(...), for region,
we can also retrieve its data by calling function CRgn::GetRegionData(...). This
function has two parameters:

int CRgn::GetRegionData(LPRGNDATA lpRgnData, int nCount);

Here lpRgnData is a pointer that will be used to receive the region data, and nCount
specifies the size of buffers that are pointed by lpRgnData. Of course it is not possible
to know the size of region data before we know its detail. To find out the necessary

buffer size, we can first pass NULL to lpRgnData parameter and 0 to nCount
parameter, which will cause the function to return the size needed for storing all the
region data. Using this size, we can allocate enough buffers and call the function
again to actually retrieve the region data.

Region data is stored in a RGNDATA type structure:

typedef struct _RGNDATA {

RGNDATAHEADER rdh;

char Buffer[1];

} RGNDATA;

It contains two members, rdh is of RGNDATAHEADER type, which is the region data
header. Member Buffer is the first element of a char type array that contains a series
of rectangles. The information of the region is stored in its header structure:

typedef struct _RGNDATAHEADER {

DWORD dwSize;

DWORD iType;

DWORD nCount;

DWORD nRgnSize;

RECT rcBound;

} RGNDATAHEADER;

Member dwSize specifies the size of this header, and the iType specifies the region
type, whose value must be RDH_RECTANGLES, which means that the region is made
up of a number of rectangles. Member nCount specifies the number of rectangles
contained in this region, and rcBound specifies the bounding rectangle. In order to
scale the region, we need to implement a loop, and scale the corresponding
rectangle whose data is contained in the data buffer within each loop.

If we simply want to offset the region, there is a member function of CRgn that can
be used to offset the whole region just like we can offset a rectangle:

int CDC::OffsetClipRgn(int x, int y);

int CDC::OffsetClipRgn(SIZE size);

The region must be selected into a DC in order to call the above member functions.

New Tool

Sample 11.8\GDI is based on sample 11.6\GDI that implements freeform selection.
In the sample, first a new command is added to toolbar IDR_DRAWTOOLBAR, whose
ID is ID_BUTTON_FREESEL (Figure 11-12). Macro TOOL_HEAD_ID is redefined (it
represents ID_BUTTON_FREESEL now) to allow this new tool be automatically
considered for message mapping. In order to use old message handlers, the ID of
the freeform selection tool is set to have the following relationship with other IDs:

ID_BUTTON_FREESEL = ID_BUTTON_RECTSEL+1

In class CGDIView, like rectangular selection command, we need to handle
WM_LBUTTONDOWN, WM_LBUTTONUP and WM_MOUSEMOVE messages to
implement freeform selection tool. In the sample, a new case is added to the switch
statement within each message handler.

Drawing rectangular outline and freeform outline is different. For rectangular
selection, whenever mouse is moving, we erase the old rectangular outline and
draw a new one using old mouse position (recorded when mouse left button was
first pressed down) and current mouse position. For freeform selection, we do not
need to erase the old outline: each time the mouse is moving, we just draw a line
between the previous mouse position (recorded when WM_MOUSEMOVE was
received last time) and the current mouse position. For this purpose, a new variable
CGDIView::m_ptPrevious is declared, which will be used to record the previous
mouse position. The current mouse position will be passed to the mouse message
handler as a parameter. Since the outline is drawn in the client window, it needs to
have a same ratio with the current displayed bitmap. However, to make it easy for
copying and moving the selection, the path must be recorded with a ratio of 1:1 no
matter what the current image ratio is. So for each mouse move, we must do the
following two things: draw a line between the old mouse position and the current
mouse position in the client window, then draw the same thing on the memory
bitmap (CGDIView:: m_bmpDraw) for path recording.

To simplify outline drawing, a CPen type variable is declared in class CGDIView and
is initialized in the constructor as follows:

......

m_penDot.CreatePen(PS_DOT, 1, RGB(0, 0, 0));

......

We will use dotted line to draw the outline of irregular selection while the mouse is
moving.

To record the selected region, a CRgn type variable is declared in class CGDIView.
The following portion shows how freeform selection is handled after
WM_LBUTTONDOWN message is received:

(Code omitted)

For WM_MOUSEMOVE message, we need to draw the freeform outline in the client
window and do the same thing to CGDIView::m_bmpDraw. Note since the current
image ratio may not be 1:1, we must use normalized points when recording path:

(Code omitted)

For WM_LBUTTONUP message, we need to draw the last segment of outline, close
the figure, and end the path. Then we need to create the region from path, and set
the dimension of the tracker to the dimension of the bounding box of the selected
region. Again we must consider ratio conversion here: since the path is recorded
with a ratio of 1:1, we must scale its bounding box to the current image ratio. In the
sample, function CGDIView::UnnormalizeTrackerRect(...) is added to scale a
normalized rectangle to the current image ratio. The rest thing needs to be done is
the same with that of rectangular selection: we need to back up the whole image
as well as the selected area:

(Code omitted)

Resizing and Moving the Freeform Selection

Resizing and moving the freeform selection is almost the same with that of
rectangular selection, except that before copying the selected area, we must offset
or resize the region and select it into the target DC. The following portion of function
CGDIView::OnLButtonDown(...) shows how the region is resized and selected into the
target memory DC, and how the selected image is copied back:

(Code omitted)

With the above implementation, the application will support freeform selection.

11.9 Cut, Copy and Paste

Sample 11.9\GDI is based on sample 11.8\GDI.

Clipboard DIB Format

Like what we did for one line editor in chapter 9, here we will also implement copy,
cut and paste commands for our simple graphic editor. As we know, if we want to
put data to the clipboard, first we must open and empty it, then we must put data
with standard format to the clipboard so that it can be shared by other applications.
There are a lot of standard clipboard formats. Also, we can define and register our
own clipboard formats.

The format for device independent bitmaps is CF_DIB, we need to prepare image
data with standard DIB format. Because there exists many different DIB formats, it is
desirable if the application supports format conversion for cut, copy and paste
commands. For example, if the image being edited by our application is 16-color
format, and the DIB contained in the clipboard is 256-color format, it is not
convenient if we can not paste the data just because of the difference on data
format.

Just for the demonstration purpose, in our sample we will implement DIB copy, cut
and paste for only 256-color format. With the knowledge of previous chapters, it is
easy to extend the application to let it support multiple image formats.

Preparing DIB Data

We already know how to prepare DIB data: allocate enough buffers, stuff them with
bitmap information header, color table, and DIB bit values. Because the image
being edited (the whole bitmap) and the image that will be put to the clipboard
(bitmap portion under the tracker) has the same bitmap information header (except
for members biWidth, biHeight and biImageSize) and color table, but different
dimension and bit values, we can first copy the current bitmap information header
and color table into the buffers, then we need to obtain the image bit values from
the area that is selected by the tracker.

Both cut and copy commands can share one function to prepare DIB data and put
it to the clipboard. For cut command, besides image copying, we also need to fill all
the selected area with the current background color.

We need to calculate the values of the following members for the new bitmap
information header: biWidth, biHeight and biImageSize. Here the dimension of the
new image (biWidth, biHeight) can be decided from the size of the tracker, and the
image size can be calculated from member biBitCout along with the new image
dimension. In the sample, function CGDIDoc::CreateCopyCutDIB()creates a DIB that
is exactly the same with the image contained in the selected area. The following
portion of this function shows how the buffers are allocated and how the bitmap
information header is created:

(Code omitted)

The buffer size of new DIB data is calculated and stored in variable dwDIBSize. Here
rect stores the normalized dimension of the current tracker. The current image's
bitmap information header is stored in variable bi. After copying it into the new
buffers, we change members biWidth, biHeight and biImageSize to new values.

Then, we need to copy the current color table to the newly allocated buffers.
Although we could retrieve the palette from the original DIB data, it may not be up-
to-date because the user may change any entry of the palette by double clicking
on the color bar. In the sample, function CPalette::GetPaletteEntries(...) is called to
retrieve the current palette, and is used to create the new image:

(Code omitted)

Because there is no restriction on the dimension of the tracker, the user can actually
select an area that some portion of it is outside the current image. In order to copy
only the valid image, we need to adjust the rectangle before doing the copy. In the
sample, only the intersection between the tracker and the image is copied, and the
rest part of the target image will be filled with the current background color. In
function CGDIDoc::CreateCopyCutDIB(...), the actual rectangle that will be used to
obtain the image bit values from the source bitmap is stored in variable rectSrc, and
sizeTgtOffset is used to specify the position where the image will be copied to the
target image. This variable is necessary because the tracker's upper-left corner may
resides outside the image. The whole image is copied using a loop. Within each
loop, one raster line is copied to the target bitmap. In the function, two pointers are
used to implement this copy: before copying the actual pixels, lpRowSrc is pointed
to the source image buffers and lpRowTgt is pointed to the target image buffers.
Their addresses are calculated by adding the bitmap information header size and
the color table size to starting addresses of the DIB buffer. Since one raster line must
use multiple of 4 bytes, we need to use WIDTHBYTES macro to calculate the actual
bytes that are used by one raster line. The following shows how the selected
rectangular area of the bitmap is copied to the target bitmap:

(Code omitted)

Cut & Copy

With function CGDIDoc::CreateCopyCutDIB(...), it is much easier to implement cut
and copy commands. For copy command, we need to open the clipboard, empty
it, set clipboard data, and close the clipboard. For the cut command, we also need
to fill the selected area with the current background color. The following shows how
the cut command is implemented:

(Code omitted)

Paste

Paste command is the reverse of cut or copy command: we need to obtain DIB
data from the clipboard and copy it back to the bitmap image that is being edited.
To let the user place pasted image everywhere, we need to implement tracker
again to select the pasted image. With this implementation, the user can move or
resize the image surrounded by the tracker just like using the rectangular selection
tool.

So instead of copying DIB data from the clipboard directly to the bitmap being
edited, we can first create and copy it to the backup bitmap image
(CGDIView::m_bmpSelBackup), then change the current drawing tool to
rectangular selection (if it is not). By doing this, everything will go on as if we just
selected a portion of image using the rectangular selection tool.

When the user executes Edit | Paste command, function
CGDIDoc::OnEditPaste()will be called. The DIB data in the clipboard will be
replicated and passed to function CGDIView::PasteDIB(...). Within the function, a
new bitmap will be created using variable m_bmpSelBackup, and the DIB data
contained in the clipboard will be copied to it. Please note we must replicate the
clipboard data instead of using it directly because the data may be used by other
applications later. The following is the implementation of function
CGDIDoc::OnEditPaste():

(Code omitted)

The following portion of function CGDIView::PasteDIB(...) shows how to copy the
clipboard DIB data to the backup DIB image by calling function ::SetDIBits(...) (the
clipboard data is passed through parameter hData):

(Code omitted)

When calling function ::SetDIBits(...), we need to provide the handle of client window
(to its first parameter). This is because the image will finally be put to the client
window. Also we need to provide the handle of target bitmap image (to the second
parameter). The third and fourth parameters of this function specify the first raster
line and total number of raster lines in the target bitmap respectively. The fifth
parameter is a pointer to the source DIB bit values (stored as an array of bytes). The
sixth parameter is a pointer to bitmap header, and final parameter specifis how to
use the palette. Since we want the DIB bits to indicate the color table contained in
the DIB data, we should choose DIB_RGB_COLORS flag.

After copying the image, we need to enable the tracker, backup the current
bitmap, copy the new bitmap to the area specified by tracker rectangle, and set

the current drawing tool to rectangular selection. Then, we need to update the
client window. The following portion of function CGDIView::PasteDIB(...) shows how
these are implemented:

(Code omitted)

Because the rectangular selection button is not actually pressed by the user, we
need to generate a WM_COMMAND message in the program and send it to the
mainframe window. When doing this, WPARAM parameter of the message is set to
the ID of rectangle selection command. This will have the same effect with clicking
the rectangular selection button using the mouse.

With the above implementation, we can execute cut, copy and paste commands
now. Please note that these commands work correctly only if the currently loaded
image is 256-color format. For the other formats, error message may be generated.

11.10 Palette Change & Flickering

Sample 11.10\GDI is based on sample 11.9\GDI.

Problems

Now we have a very basic graphic editor. Before the editor becomes perfect, we
still have a lot of things to do: we need to add new tools for drawing curves,
rectangles, ellipses, and so on; also we need to support more bitmap formats, for
example: 16-color DIB format, 24-bit DIB format. We can even add image processing
commands to adjust color balance, brightness and contrast to make it like a
commercial graphic editor.

Besides these, there are still two problems remained to be solved. One is that after
loading an image with this simple editor, if we switch to another graphic editor and
load a colorful image then switch back, the color of the image contained in our
editor may change. Another problem is the unpleasant flickering effect when we
draw lines with the grid on.

Message WM_PALETTECHANGED

The first problem is caused by the change on the system palette. Because each
application has its own logical palette, and the system has only one physical
palette, obviously the system palette can not be occupied by only one application
all the time. Since the operating system always tries to first satisfy the needs of the
application that has the current focus, if we switch to another graphic editor and
leave our editor working in the background, most entries of the system palette will
be occupied by that application and very few entries are left for our application. In
this case, the system palette represents the logical palette of another application

rather than ours, so if we still keep the original logical-to-system palette mapping,
most colors will not be implemented correctly. This situation remains unchanged until
we realize the logical palette again, which will cause the logical palette to be
mapped to the system palette.

Under Windows(, there is a message associated with system palette changing. When
the system palette is mapped to certain logical palette and this causes its contents
to change, a WM_PALETTECHANGED message will be sent out. All the applications
that implement logical palette should handle this message and re-map the logical
palette to the system palette whenever necessary to avoid color distortion.

In the sample, whenever we draw the image in CGDIView::OnDraw(...), function
CDC:: RealizePalette() is always called to update the logical palette. So when
receiving message WM_PALETTECHANGED, we can just update the client window to
cause the palette to be mapped again.

Usually message WM_PALETTECHANGED is handled in the mainframe window. This is
because an application may have several views attached to a single document. By
handing this message in the mainframe window, it is relatively easy to update all
views. The following is the message handler CMainFarme::OnPaletteChanged(...)
that is implemented in the sample for handling the above message:

void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)

{

CFrameWnd::OnPaletteChanged(pFocusWnd);

GetActiveDocument()->UpdateAllViews(NULL);

}

This function is quite simple. With the above implementation, the first problem is
solved.

Flickering

The second problem will be present only if the grid is on. This is because the grid is
drawn directly to the client window: whenever the image needs to be updated, we
must first draw the bitmap, and this operation will erase the grid. The user will see a
quick flickering effect when the grid appears again. If we keep on updating the
client window, this flickering will become very frequent and the user will experience
very unpleasant effect.

We already know that one way to get rid of flickering is to prepare everything in the

memory and output the final result in one stroke. This is somehow similar to that of
drawing bitmap image with transparency (See Chapter 10). To solve the flickering
problem, we can prepare a memory bitmap whose size is the same with the
zoomed source image, before updating the client window, we can output
everything (image + grid) to the memory bitmap, then copy the image from the
memory bitmap to the client window.

However, the problem is not that simple. Because the image size can be different
from time to time, also the image could be displayed in various zoomed ratio, it is
difficult to decide the dimension of the memory bitmap. To avoid creating and
destroying memory bitmaps whenever the size (or ratio) of the output image
changes, we can create a bitmap with fixed size for painting the client window. If
the actual output needs a larger area, we can use a loop to update the whole
client area bit by bit: within any loop we can copy a portion of the source image to
the memory bitmap, add the grid, then output it to the client window. Because
CDC::BitBlt(...) is a relatively fast function, and the bitmap drawing will be
implemented directly by the hardware, calling this function several times will not
cause obvious delay.

In the sample application, some new variables are added for this purpose. We know
that in order to prepare a memory bitmap, we also need to prepare a memory DC
that will be used to select the bitmap. In class CGDIView, a CBitmap type variable
m_bmpBKStore and a CDC type variable m_dcBKMem are declared. Also, since the
DC will select the bitmap and logical palette, two other pointers
CGDIView::m_pBmpBKOld and CGDIView::m_pPalBKOld are also declared. The two
pointers are initialized to NULL in the constructor, and the memory bitmap
CGDIView::m_bmpBKStore is created in function CGDIView::OnInitialUpdate()when
an image is first loaded. The reverse procedure is done in function
CDC::OnDestroy(), where the memory bitmap and the palette are selected out of
the memory DC.

In function CGDIView::OnDraw(...), the drawing procedure is modified. First the
zoomed image is divided horizontally and vertically into small portions, all of which
can fit into the memory bitmap. Then each portion of the image is copied to the
memory bitmap, and the grid is added if necessary. Next the image contained in
the memory bitmap is copied to the client window at the corresponding position.
Here we need to calculate the origin and dimension of the output image within
each loop. The following portion of function CGDIView::OnDraw(...) shows how the
zoomed source image is divided into several portions and copied to the memory
bitmap:

(Code omitted)

The values of macros BMP_BKSTORE_SIZE_X and BMP_BKSTORE_SIZE_Y must be
multiple of the maximum ratio (In the sample, the maximum ratio is 16 and the values

of BMP_BKSTORE_SIZE_X and BMP_BKSTORE_SIZE_Y are both 256). When doing the
copy, we must provide the dimension and the origin for both source and target
images, whose values are explained in the following table:

(Table omitted)

The actual dimension of the source image that we can display in one loop is stored
in variable size (with 1:1 ratio). For the memory bitmap, for each loop the image is
copied to its upper-left origin (0, 0); for the source bitmap, the origin depends on the
values of i and j.

When we copy the image from the memory bitmap to the client window, we must
calculate if the whole bitmap contains valid image. If not, we should draw only the
valid part:

(Code omitted)

The grid drawing becomes very easy now. The brush origin can always be set to (0,
0) because both the horizontal and vertical dimensions of the memory bitmap are
even. Before the image contained in the memory bitmap is copied to the client
window, the grid is added if the current ratio is greater than 2 and the value of
CGDIDoc::m_bGridOn is TRUE:

(Code omitted)

With the above implementation, there will be no more flickering when we draw lines
with grid on.

Summary

1) Tracker can be implemented by using class CRectTracker. To add tracker to any
window, first we need to use CRectTracker to declare a variable, then set its style. To
display the tracker, we need to override the function derived from
CWnd::OnDraw(...)and call CRectTracker::Draw(...) within it.

2) The style of a tracker can be specified by enabling or disabling flags for member
CRectTracker::m_nStyle. The following flags are predefined values that can be used:
CRectTracker::solidLine, CRectTracker::dottedLine, CRectTracker::hatchedBorder,
CRectTracker::resizeInside, CRectTracker::resizeOutside, CRectTracker::hatchInside.

3) When the mouse left button is pressed, we can call function
CRectTracker::HitTest(...) to check if the mouse cursor is over the tracker object. If so,
we can call function CRectTracker::Track(...) to track the activities of the mouse. By
doing this, there is no need to handle WM_MOUSEMOVE and WM_LBUTTONUP
messages.

4) Region can be used to confine the DC output within a specified area. The shape
of a region can be rectangular, elliptical, polygonal, or irregular. A new region can
be created from existing regions by combining them using logical AND, OR, and
other operations.

5) A region must be selected into DC before being used. The function that can be
used to select a region is CDC::SelectClipRgn(...). To select the region out of the DC,
we can simply call this function again and pass NULL to its parameter.

6) Path can be used to record outputs to the device context. To start path
recording, we need to call function CDC::BeginPath(). To end path recording, we
can call function CDC::EndPath(). All the drawings between the two function calls
will be recorded in the path. The output will not appear on the DC when the
recording is undergoing.

7) Function CDC::StrokePath() can be called to stroke the outline of a path. Function
CDC::FillPath(...) can be used to fill the interior of the path. Function
CDC::StrokeAndFillPath() can be used to implement both.

8) Region can be created from an existing path by calling function
CRgn::CreateFromPath(...).

9) A region is made up of a series of rectangles. By resizing all the rectangles, we can
resize the region.

10) A path is made up of a series of vectors. To resize a path, we can scale all the
control points. We can also change the position of some control points to generate
special effects.

11) The standard DIB format that can be used in the clipboard is CF_DIB. To put DIB
data to the clipboard, we need to prepare DIB data with standard DIB format, open
the clipboard, empty the clipboard, call function ::SetClipboardData(...) and pass
CF_DIB flag along with the data handle to it. After all these operations, we must
close the clipboard.

12) To obtain DIB data from the clipboard, we can use CF_DIB flag to call function
::GetClipboardData(...).

13) Message WM_PALETTECHANGED is used to notify the applications that the system
palette has changed. Applications that implement logical palettes should realize
the logical palette again after receiving this message to achieve least color
distortion.

14) Outputting directly to window may cause flickering sometimes. This is because

usually the old drawings must be erased before the window is updated. To avoid
flickering, we can prepare everything in a memory bitmap, then output the patterns
contained in the memory bitmap to the window in one stroke.

BACK TO INDEX

Chapter 12 Screen Capturing & Printing
By now we already have a lot of experience of using both DIB and DDB along with
logical palette. But it is still not enough. All the samples we created in the previous
chapters start from DIB, so we know the color table before the image is displayed in
the window, and therefore can implement logical palette and realize it before the
pixels are actually drawn. By doing this, we can always get the best color result.

However, sometimes we need to create image starting from the DDB. If we use DDB
to record image data, it would be very simple because we don't have to worry
about the actual data format and palette realization. However, there are two
problems: 1) If we want to save the image data to a file, we still need to convert it to
DIB format. 2) If the hardware is a palette device, the entries of the system palette
may actually change (e.g., when another application realizes its own logical
palette). In this case, the colors contained in our DDB may not be correctly mapped
if we do not implement logical palette for it.

A very typical application of this kind is the screen capturing application. Screen
capture can be implemented by copying images between the desktop window DC
and our own memory DC. We can call function CDC::BitBlt(...) to copy the images. In
this case, the memory DC must select a DDB rather than DIB. If the system uses
palette device, this may cause potential problem. Think about the following
situation: we use screen capturing application to make a snapshot of the desktop
screen, and currently there is a graphic editor opened with a colorful image being
displayed. As long as the system palette remains unchanged, the captured image
can be displayed in its original colors. Suppose the graphic editor is closed and this
causes the system palette to change, the captured image will also change
accordingly.

To prevent this from happening, when capturing the screen, we need to copy not
only the image bits, but also the colors contained in the current system palette. Then
we can use them to create a logical palette, and convert the DDB to DIB data. In
the client window, we can display the image using DIB data instead of captured
DDB data. By doing this, when the system palette changes, we can re-match the
logical palette to achieve the best effect.

Samples in this chapter are specially designed to work on 256-color palette device.
To customize them for non-palette devices, we can just eleminate logical palette
creation and realization procedure.

12.1 Capturing the Whole Screen

Capture

Making capture is very simple. We already have a lot of experience of creating
bitmap in memory, selecting it into a memory DC, and copying it to the client
window. We can make a screen capture by reversing the above procedure. The
following lists the necessary steps for making a screen capture: 1) Create a blank
bitmap in the memory. 2) Create a memory DC that is compatible with the window
DC. 3) Select the memory bitmap into the memory DC. 4) Obtain a valid window
DC. 5) Copy the image from the window DC to the memory DC. Here the window
DC can be either the desktop window DC or a client window DC. In the former case,
the whole screen will be captured. In the later case, only the client window will be
captured.

Sample 12.1\GDI demonstrates how to make screen capture. It is a standard SDI
application generated by Application Wizard, whose view class is based on
CScrollView. In the sample, function CGDIView:: Capture() is added to capture the
whole desktop screen and store the image in a CBitmap type variable.

Under Windows(, desktop window is the parent of the all windows in the system, and
its pointer can be obtained by calling function CWnd::GetDesktopWindw(). With this
pointer, we can create a DC and use it to draw anything on the desktop (Be careful
with this feature, generally an application should not draw outside its own window).
Of course, we can also copy a bitmap to the desktop window.

The following is the implementation of function CGDIView::Capture() that shows how
to copy the whole screen and store the image in a CBitmap type variable:

(Code omitted)

In the above function, first desktop window DC is created from the pointer of
desktop window (By calling function CWnd::GetDesktopWindow()), then the
dimension of the desktop window is retrieved and stored in variable rect; next the
memory DC and blank memory bitmap are created and the bitmap is selected into
the memory DC; finally function CDC::BitBlt(...) is called to capture the whole screen.

Of course we can use the bitmap (bmpCap) and memory DC (dcMem) created
here to display the captured image. However, because there is no logical palette
associated with the bitmap, if the colors contained in the system palette change,
the captured image may not be displayed correctly. So before displaying the
image, we need to first convert it to DIB and implement logical palette.

Converting DDB to DIB

Like other samples, after DDB is converted to DIB we'd like to store it in document so
that the image can be easily saved to file through serialization. Also, a logical
palette is created in the constructor of the document, it will be used to display
captured image later. The entries of this palette is not initialized in the constructor.
The variables used for storing DIB and logical palette are CGDIDoc::m_hDIB and
CGDIDoc::m_palDraw respectively. Like other samples, here we also have
corresponding functions in CGDIDoc that makes two variables accessible from
outside the document.

In CGDIDoc, function CGDIDoc::ConvertDDBtoDIB(...) is implemented to convert
captured DDB format image to DIB. The procedure is almost the same with what we
implemented in sample 10.4\GDI (There is also a function
CGDIDoc::ConvertDDBtoDIB(...) there), the only difference is where the logical
palette comes from. In sample 10.4\GDI, whenever we open a DIB image, we can
obtain its color table, which can be used to create the logical palette. Here, we do
not have such kind of color table and must create a logical palette from the colors
contained in the current system palette and use it to generate the color table for DIB
image.

Obtaining colors contained in the system palette is not difficult. Remember in sample
8.9\GDI, we can actually monitor the system palette all the time. To create a palette
whose entries are always synchronized to the entries of the system palette, we can
set member peFlags of structure PALETTEENTRY to flag PC_EXPLICIT when creating
the logical palette (Also, set lower two bytes of structure PALETTEENTRY to an index to
the system palette). The logical palette (More accurately, the entries with flag
PC_EXPLICT) created this way will not be mapped to the system palette by looking
up the same (or nearest) colors or filling empty entries. Instead, each entry will
always be mapped to a fixed entry contained in the system palette. If the colors in
the system palette change, the corresponding colors in the logical palette will also
change.

We need to create this kind of logical palette right after the image is captured
(Before the system palette changes) so that the colors contained in the captured
image will be represented by the system palette. Although we can use this palette
to obtain the correct color table we will use, it can not be used for later DIB
displaying. The reason is that the colors contained in these entries may change
constantly. We need to create a logical palette using the color table obtained this
way (Member peFlags of the palette entries should be set to NULL).

After the logical palette with PC_EXPLICIT flag entries is created, we can select it into
DC and realize it. Then we can allocate enough buffers to store BITMAPINFOHEADER
type object and color table. When calling function ::GetDIBits(...), we can pass NULL
to its lpvBits parameter, this will cause the bitmap header and the correct color table
to be filled into the buffers allocated before.

Now that we have the correct color table, we can use it to create a logical palette
with member peFlags set to NULL. In the sample, since an uninitialized logical palette
is created at the beginning, we can just fill the palette entries after each capturing.

The rest part of DDB-to-DIB conversion is the same with that of sample 10.4\GDI: we
just need to calculate the image size, reallocate the buffers, and call ::GetDIBits(...)
again to receive actual bitmap bit values.

The following is the implementation of function CGDIDoc::ConvertDDBtoDIB(...), the
input parameter is a CBitmap type pointer, and the returned value is the handle of
global memory that contains DIB data:

(Code omitted)

New Command

In sample 12.1\GDI, a new command Capture | Go! is added to mainframe menu
IDR_MAINFRM. This command is handled by function CGDIDoc::OnCaptureGo().
Within the function, we first minimize the application by calling function
CMainFrame::ShowWindow(...) using SW_SHOWMINIMIZED flag. Then we call function
CGDIView::PrepareCapture() to set the timer (This function contains only one
statement).

Because we will minimize our application window, the capture should be delayed
for a few seconds after the user executes Capture | Go! command. Function
CGDIView::PrepareCapture() does nothing but setting up a timer with time out
period set to 2 seconds. Function CGDIView::Capture() is called when the timer
times out. Within function CGDIView::Capture(), after the capture is made, function
CGDIDoc:: GetCaptureBitmap(...) will be called to convert DDB to DIB and update
the client window (Within this function, CGDIDoc::ConvertDDBtoDIB(...) will be
called).

In CGDIView::OnDraw(...), we use function ::SetDIBitsToDevice(...) to display DIB data.
This is the same with sample 10.4\GDI.

Figure 12-1 shows the time sequence of function calling.

(Figure 12-1 omitted)

12.2 Capturing a Specified Window

One problem of the sample implemented in the previous section is that it can
capture only the whole desktop window. To improve it, we will add some new
functions so that the user can specify any window for capturing.

Picking Up a Window

Often there are many windows contained in the desktop window. Each application
may have one mainframe window and several child windows. To let the user pick up
a window with mouse clicking, we must find a way to detect if there is a window
under the current mouse cursor.

We can call function CWnd::WindowFromPoint(...) to retrieve the window under
current mouse cursor. If there is such a window, its handle will be returned by this
function. Otherwise the function will return NULL.

We also need to monitor mouse movement and respond to its activities when the
user is selecting a window. We all know that this can be implemented by handling
mouse related messages: WM_LBUTTONDOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP. Also we must be able to receive these messages even if the mouse
cursor is outside our application window. To implement this, we need to set window
capture. By doing so, the user can hold the left button and move it anywhere to pick
up window. As long as the left button is held down, we can receive
WM_MOUSEMOVE messages (The capture will be released by the system if the left
button is released).

Another issue is how to indicate the selected window. To make the application
easier to use, we need to put some indication on the window that is being selected.
From the previous section we know that the DC of the desktop window can be
obtained and used to draw anything anywhere on the screen. With the desktop
window DC, we can reverse the selected window when the mouse cursor is over it,
and resume it as the mouse cursor leaves the window.

The drawing mode can be set by calling function CDC::SetROP2(...) using R2_NOT
flag. After this if we draw a rectangle (By calling function CDC::Rectangle(...)) using
the window's position and size, the whole window will be reversed. Calling this
function twice using the same parameter will resume the original window.

One thing we must pay attention to is that the application itself also has a
mainframe window, and therefore will be selected for capturing if the mouse cursor
is over it. This is not a desirable feature. To solve this problem, after function
CWnd::WindowFromPoint(...) is called, we must check if the window returned by this
function belongs to the application itself.

Because the windows can overlap one another, when the mouse cursor is over one
window, we should not reverse the overlapped part (Figure 11-2). To solve this
problem, we need to use region. We can create a region that contains only the non-
overlapped part of a window, which can be selected by the desktop window DC.
By doing this, the overlapped portion of the window will not be reversed when the
function CDC::Rectangle(...) is called.

After the user has selected a specific window and executed Capture | Go!
command, we can find out the size and position of this window, start timer, call
function CDC::BitBlt(...) to make a snapshot of the window and store the data to the
memory bitmap.

Dialog Box IDD_DIALOG_SELECT

Sample 12.2\GDI is based on sample 12.1\GDI. The new sample allows the user to
select a specified window for making snapshot. First a dialog box is added to the
application, it will be used to let the user select a window. The new dialog template
is IDD_DIALOG_SELECT, and the class associated with it is CSelDlg. To make the
interface user friendly, mouse cursor will be changed when the user is selecting a
window (With left button held down). In the sample, a cursor resource
IDC_CURSOR_SELECT is added for this purpose. The cursor is loaded in the constructor
of CSelDlg and its handle is stored in variable CSelDlg::m_curSelect. In the dialog box
template, an icon that contains the cursor is displayed. If the user click on this icon, it
will be changed to a blank icon and at the same time, the cursor will be customized
to IDC_CURSOR_SELECT. If the user releases the mouse button, everything will be
resumed. This will give the user a feeling that the mouse clicking actually picks up the
cursor (Figure 12-3).

The icons displayed in the dialog box are also stored as resources. Their IDs are
IDI_ICON_CURSOR and IDI_ICON_BLANK. Also, they are loaded in the class
constructor and are displayed in the dialog box by calling function
CStatic::SetIcon(...). The control used to display the icon is a static control (Actually it
is added as a "Picture" control). In the property sheet "Picture Properties", we can
choose the type of images that will be displayed, such as bitmap or icon (Figure 12-
4).

Messages WM_LBUTTONDOWN, WM_LBUTTONUP and WM_MOUSEMOVE are handled
to let the user select a window. When the left button is pressed down, we check if it
hits the icon contained in the dialog box. If so, we set window capture for the dialog
box, change the mouse cursor, and change icon IDI_ICON_CURSOR to
IDI_ICON_BLANK:

(Code omitted)

Variable CSelDlg::m_hWnd is used to store the handle of the selected window. Also,
variable CSelDlg::m_rectSelect is used to indicate the rectangle of the previously
selected window. If this rectangle is empty, no window is currently being reversed.

As the mouse moves, we will keep on receiving WM_MOUSEMOVE messages. In the
sample, function CSelDlg::DrawSelection(...) is implemented to handle this message.
Within this function, first we create a region that contains all of the desktop window
excluding the area occupied by the application window. We select this region into

the desktop window DC before reversing any window. By doing this, if the selected
window is overlapped by the application window, the reversing effect does not
apply to the application window. The following portion of function
CSelDlg::DrawSelection(...) shows how the region is created:

(Code omitted)

In order to resume the reversed window, the drawing mode should be set to R2_NOT,
which will reverse all the pixels contained in the rectangle when function
CDC::Rectangle(...) is called. The drawing mode can be set by calling function
CDC::SetROP2(...):

(Code omitted)

Then we call function CWnd::WindowFromPoint(...) to see if the current mouse cursor
is over any window. We use the returned pointer to retrieve the handle of that
window, and compare it with the handles of our application windows (both
mainframe window and dialog box window). If there is a match, we should not draw
the rectangle because the cursor is over the application window (In this case, if
there exists a window that has been reversed, we should resume it). Otherwise, we
further compare it with the handle stored in CSelDlg::m_hWnd, if they are the same,
we don't do anything because the window under the cursor has been reversed. If
not, this means a new window is being selected and we should resume the old
reversed window (If there exists such a window) then reverse the newly selected
one:

(Code omitted)

In function CGDIView::Capture(), we need to first obtain handle CGDIDoc::m_hWnd
from the document, if it is not a valid window handle, we still capture the whole
desktop screen. Otherwise we use this handle to find out the rectangular area of the
window and make the snapshot.

12.3 Simple Printing

Although we didn't write a single line of code to implement printing feature, all our
SID or MDI samples have the default printing functionality. This includes default
printer set up, print preview, and printing the client window. Like display, printer is
another type of graphic device that can be used to output drawings. Its interface to
the software programmer is similar to that of display: instead of writing code to
control the hardware directly, we can use DC to output drawings to the printers.
Actually we can call member functions of class CDC to output dot, line, curve,
rectangle and bitmaps to a printer.

Mapping Mode

However, there are some differences between printing devices and display devices.
One main difference is that two devices may have different capabilities. Because all
displays have similar sizes and resolutions, it is relatively convenient to measure
everything on the screen using pixel. For example, it doesn't make much difference if
we display a 256(256 bitmap on an 800(600 display or a 1024(768 display. Since every
window is able to display an object that is larger than the dimension of its client area
(using scroll bars), it is relatively easy to base every drawing on the minimum possible
unit ¾ pixel.

For printers, this is completely different. There are many types of printers in the world,
whose resolutions are remarkably different from one another. For example, there are
line printers, one pixel on this kind of printers may be 0.1mm(0.1mm; also, there are
many types of laser printers, whose resolution can be 600dpi, 800dpi or even denser.
If we display a 256(256 image on the two types of printers, their sizes will vary
dramatically.

Anther difference between printing devices and display devices is that when doing
the printing, it is desirable to make sure that all the outputs fit within the device. For a
window, since we can customize the total scroll size, it doesn't matter what the
actual output dimension is (The scroll size can always be set to the dimension of
output drawings). For the printer, we need to either scale the output to let it fit within
the device or print the output on separate papers.

In order to handle this complicated situation, under Windows(, OS and devices have
some common agreements. When we draw a dot, copy a bitmap to device,
everything is actually based on logical units (pixels). By default, the size of one
logical unit is mapped to one minimum physical pixel on the device, however, this
can be changed. Actually class CDC has a function that let us customize it:

virtual int CDC::SetMapMode(int nMapMode);

Parameter nMapMode specify how to map one logical unit to physical units of the
target device. By default it is set to MM_TEXT, which maps one logical unit to one
physical unit. It can also be set to one of the following parameters:

(Table omitted)

Instead of mapping one logical unit to a fixed number of pixels, it is mapped to a
fixed size on the target device. It is the device driver's task to figure out the actual
number of pixels that should be used for drawing one logical pixel. By doing this type
of mappings, the output will have the same dimension no matter what type of target
device we use.

There is one difference between MM_TEXT mapping mode and other modes: for

MM_TEXT mode, the positive y axis points downward. For other mapping modes, the
positive y axis points upward. So if we decide to use one of the mapping mode listed
above, and the origin of the bitmap is still the same, we need to use negative values
to reference a pixel's vertical position (Figure 12-5).

Converting between Logical and Device Units

Sometimes we need to implement the conversion between logical unit and actual
device unit. Class CDC has a bunch of functions that allow us to do the conversion
between two coordinate systems. For example, CDC::LPtoDP(...) allows us to convert
a point (POINT type variable) or a size (CSize type variable) measured in logical unit
coordinate system to device coordinate system. And CDC::DPtoLP(...) does the
reverse.

Implementing Print

Actually it is easy to implement printing for applications generated from the
Application Wizard. When the user executes File | Print or File | Print Preview
command, a series of printing messages will be sent to the application. Upon
receiving these messages, the frame window finds out the current active view, and
call that view's CView::OnPrint(...) function to output drawings to the target device.

By default, CView::OnPrint(...) does nothing but calling function CView::OnDraw(...),
so everything contained in the client window (view) will also be output to the printer.
We can experiment this with the sample already implemented. For example, after
executing sample 12.2\GDI, if we make a snapshot and execute File | Print
command, the captured image will be sent to the printer. The actual size of the
output image depends on the type of printer because in CGDIView::OnDraw(...), we
didn't set the mapping mode so the default mode MM_TEXT is used.

We must know the resolution of the target device so that we can either scale the
output to let it fit into the device or we can manage to print one image on separate
papers. One way of obtaining the target device's resolution is to call function
CDC::GetDeviceCap(...) using HORZRES and VERTRES parameters. The returned
value of this function will be the horizontal or vertical resolution of the target device,
measured in its device unit. Besides this, we can also use LOGPIXELSX and
LOGPIXELSY to retrieve the number of pixels per logical inch in the target device for
both horizontal and vertical directions. Since the width and height of a minimum
pixel in the target device may not be the same, the above two parameters may be
different.

Scaling the Image before Printing

Sample 12.3\GDI is based on sample 12.2\GDI. In this sample, when doing the
printing, the output is scaled so that it can fit within one sheet of paper no matter

what the resolution of target device is. In order to implement this, we need to
calculate the proportion between the logical unit and the physical unit of the target
device before the image is output to the device.

For example, suppose we have an image whose logical dimension is x(y, and want
to output it to the target device whose physical resolution is px(py. We further
assume that the aspect ratio of a minimum physical pixel on the target device is rx :
ry. This is illustrated by Figure 12-6:

In Figure 12-6, x=4, y=2, px=12, py=9, rx : ry = 1:2. First we choose px as the actual
width of the output image. In this case, we need to map 4 logical units to 12 physical
units in the horizontal direction. So the horizontal mapping ratio is selected as 1:3. If
we do the same thing in the vertical direction, we will have a 12(6 image on the
target device. However, because a basic pixel on the target device is not square,
the proportion of the output image will change if we do not take it (rx : ry ratio) into
consideration. To compensate for this, we need to map one logical unit to (px/x)
((rx/ry) pixels in the vertical direction. In this sample, we will have a 12X3 image on
the target device.

If we have a very tall image (For example, in Figure 12-6, if x=2, y=9), such mapping
may cause some portion of the image unable to fit into the target device. So after
calculating the mapping using the above method, we need to check the vertical
physical size and see if it is greater than py (if y((px/x) ((rx/ry) > py). If so, we need to
calculate the mapping again by first setting the vertical size to py and then
calculating the horizontal size using the same method.

Displaying or Printing?

In function CView::OnDraw(...), this mapping is unnecessary if the target device is a
display rather than a printer. To find out if this function is being called for printer, we
can call function CDC::IsPrinting(). If the returned value is FALSE, the function is
called to output drawings to display. Otherwise it is called to output drawings to
printer.

Function CGDIView::OnDraw(...)

The following portion of function CGDIView::OnDraw(...) shows how to scale the
image dimension so that it will fit within the target device before being output to the
printer. Since the image must be scaled before being printed, we call function
::StretchDIBits(...) to implement printing and still use ::SetDIBitsToDevice(...) for painting
the client window:

(Code omitted)

The physical resolution of the target device is retrieved and stored in variables

cxPage and cyPage, and the number of pixels per logical inch are retrieved and
stored in variables cxInch and cyInch, which can be used to calculate the aspect
ratio of a basic pixel on the target device. The logical dimension of the image is
stored in members lpBi->bmiHeader.biWidth and lpBi->bmiHeader.biHeight. With the
above parameters, it is easy to figure out the actual physical size of the output
image. The output dimension is stored in variable rcDest, and function
::StretchDIBts(...) is called to output the captured image to printer.

12.4 Fixed Scale Printing

The solution in the previous section scales image so that it will always fit within the
target device. However, this is not he best solution. For example, if we need to print a
small button image, the image will be enlarged to fit the paper; if we want to print a
very big image, it will be shrunk and we will inevitably lose some details.

Printing Related Functions

To let the printing output always have the same fidelity, we need to call function
CDC::SetMapMode(...) to map one logical unit to a fixed value. For example, if we
map one logical unit to 0.1mm, a 256(256 image will always have a 25.6(25.6cm2
dimension, no matter what type of target device we use. When doing the printing,
we can further call function CDC::StretchBlt(...) or ::StretchDIBits(...) to scale one
logical unit to multiple of 0.1 millimeters. For example, if we set one logical unit to 0.1
mm and call ::StretchDIBits(...) to scale the image to three times of its original
dimension, one logical unit will ultimately equal to 0.3 mm.

Usually printing is handled in function CView::OnPrint(...). If we do not override it,
function CView::OnDraw(...) (Or its overridden function) will be called to implement
the default printing. The advantage of using CView::OnPrint(...) instead of
CView::OnDraw(...) is that function CView::OnPrint(...) has two parameters, one is a
pointer to the target device context, the other is a CPrintInfo type pointer that brings
us a lot of information of the printing device. We will see how to use this parameter in
later sections.

Before printing begins, function CView::OnBeginPrinting(...) will be called. A CDC
type pointer and a CPrintInfo type pointer will be passed to this function, from which
we can obtain the information of current printing status. If we need to prepare
something before the printing starts, we can override this function. This function is
necessary because there exist some applications whose printing output is different
from what is displayed in the client window. For example, if we are programming a
video editing application, what can be displayed in the client window is usually one
of a series of images. When the user does the printing, we actually want to print all
the images. In this case, we must create either DIB or DDB data before the printing
starts. Function CView::OnBeginPrinting(...) is a best place to implement such kind of
preparation: we can create GDI objects, allocate memory, set device mapping

modes, and so on. Since the GDI objects and memory prepared here are solely used
for printing, after the printing is done, we must destroy them. Function
CView::OnEndPrinting(...) is designed for this purpose, it will be called when the
printing task is over.

When the printing is undergoing, function CView::OnPrint(...) will be called. We can
use CDC type pointer passed to this function to output objects to the printing
device, this is the same with outputting objects to display device.

Sample 12.4\GDI

Sample 12.4\GDI is based on sample 12.3\GDI. In this sample the printing is handled
in function CGDIView::OnPrinting(...), and CGDIView::OnDraw(...) is only responsible
for painting the client window. Since we can use the DIB stored in the document for
printing, we do not need to do any preparation in function
CGDIView::OnBeginPring(...). Within function CGDIView::OnPrinting(...), we first need
to obtain the DIB and palette from the document, and set the mapping mode to
MM_LOMETRIC, which will map one logical unit to 0.1 mm. Then we need to select
the palette into the target DC, call function ::StretchDIBits(...) to copy the image to
target device. Please note that after the mapping mode is set to MM_LOMETRIC, the
direction of y axis is upward. When calling function ::StretchDIBits(...), we must set the
output vertical dimension on the target device to a negative value if the origin is still
located at (0, 0):

(Code omitted)

Now no matter what type of printer we use, the output dimension will be the same.
The only difference between the output from two different types of printers may be
the image quality: for printers with high DPIs, we will see a smooth image; for printers
with low DPIs, we will see undesirable image.

Although the printing ratio is fixed for this sample, the user can still modify it through
File | Print Setup... command. In the Print Setup dialog box, the user can also select
printer, paper size and the printing ratio. The maximum printing ratio that can be set
by the user is 400%. This may cause the output image unable to fit within the target
device. In this case, we need to print one image on separate pages.

12.5 Printing on Separate Pages

If we want to output an image on separate papers, there are two situations: 1)
Number of required pages is known before the printing starts. 2) Number of required
pages has to be decided after the printing starts. For different situations, we need to
use different approaches.

Number of required Pages is Known Beforehand

Sample 12.5-1\GDI is based on sample 12.4\GDI and demonstrates how to
implement printing when the total number of pages is known beforehand.

For some applications, the number of required pages for printing is fixed. For this
situation, we need to override function CView::OnPreparePrinting(...), and call
function CPrintInfo::SetMaxPage(...) to set the page range. By doing this, when the
printing is being processed, function CView:OnPrint(...) will be called repeatedly until
all the pages are printed out. Within CView::OnPrint(...), the page information can
be obtained from member CPrintInfo::m_nCurPage (The second parameter of this
function is a pointer to class CPrintInfo), which stands for the current page number
that is being printed. According to this number, we can output different contents to
different pages. The printing will be stopped after all the pages are printed out.

For example, suppose whenever we want to print out the captured image, we'd like
to make two copies, one with 100% ratio and one with 200% ratio. In this case the
number of pages is determined beforehand. Before the printing begins, we can set
the number of pages in function CGDIView::OnPreparePrinting(...) as follows:

(Code omitted)

By doing this, if the user executes printing command, in the popped up dialog box,
the total number of pages will be set to 2. The user can choose to print any of the
pages or both of them. In function CGDIView::OnPrint(...), we need to check which
page is being printed and call function ::StretchDIBits(...) using the corresponding
ratio:

(Code omitted)

Setting Number of Pages Just Before Printing Starts

However this is not a normal case. Because the user can actually change the
printing ratio, the number of pages actually needed depends on print settings. For
example, when the user set the printing ratio to 400%, the image that can originally
fit into one page (when the ratio is 100%) often requires more than one page now.
So the actual number of pages needed depends on the printing ratio, which can
range from 25% to 400%.

One solution to this problem is to calculate the actual number of pages just before
the printing starts. At this time, the print setting will not be changed any more, so we
can calculate the number of required pages and call function
CPrintInfo::SetMaxPage(...) to set the page range.

This can be done in either function CView::BeginPrinting(...) or in function CView::
OnPrepareDC(...). The first function will be called just before the print job begins, and

the second function will be called before CView::BeginPrinting(...) is called when the
printing DC needs to be prepared. Please note that CView::OnPrepareDC(...) will
also be called for preparing display DC, to distinguish between the two situations, we
can check if parameter pInfo is NULL, if not, it is called for the printing job.

The number of required pages can be calculated by retrieving the device resolution
(need to be converted to logical unit) and comparing it with the image size. If the
image size is greater than the device resolution, we can print one portion at a time
until the whole image is output to the target device.

Sample 12.5-2\GDI is based on sample 12.4\GDI, it demonstrates how to print the
captured image using this method. In the sample, first function
CGDIView::OnPrepareDC(...) is overridden, within which the number of required
pages is calculated as follows:

(Code omitted)

Here, the device resolution is retrieved by calling function CDC::GetDeviceCaps(...).
Because the device mapping mode is MM_LOMETRIC, which may cause the values
returned by this function to be negative for vertical dimensions, we need to use
absolute value when doing the calculation.

Within function CGDIView::OnPrint(...), we print the corresponding portion of the
image according to the current page number. This procedure can be illustrated in
Figure 12-7.

The shaded area represents the image. It is divided into horizontal and vertical cells,
each cell has a dimension that is the same with target device resolution. To draw the
image, we need nine pages, each page print one cell that is labeled (v, u). First we
need to calculate the cell label from the page number:

v = (page number - 1)/(number of horizontal cells)

u = (page number -1)%(number of horizontal cells)

Here the page number starts from 1. The next step is to calculate the position and
the dimension of the cell. Obviously, the origin of a cell rectangle can be calculated
as follows:

origin X = u((device horizontal resolution)

origin Y = v((device vertical resolution)

If the cell is not the one located right-most or bottom-most, the horizontal and
vertical sizes of the cell can be determined from the resolution of target device. If it is

located right-most (i.e., cells (0, 2), (1, 2) and (2, 2) in Figure 12-7), the horizontal size
can be calculated using the following formulae:

size X = image horizontal size (u ((cell horizontal size)

Similarly, if the cell is located bottom-most, the cell's height can be calculated using
the following formulae:

size Y = image vertical size (v ((cell vertical size)

The following shows the procedure of calculating the dimension of a cell in function
CGDIView::OnPrint(...) (Sample 12.5-2\GDI):

(Code omitted)

Variables nRepX and nRepY are used to store the number of cells in horizontal and
vertical directions, and variable rectDC stores the device resolution. When a cell is
copied, its dimension is calculated and stored to variable rect. The following portion
of function CGDIView::OnPrint(...) shows how a cell is output to the device:

(Code omitted)

Calculating the Number of Pages when the Printing Is Undergoing

Sample 12.5-3\GDI uses an alternate method to calculate the number of required
pages for printing. It is based on sample 12.4\GDI. Instead of calculating the number
of pages before printing begins, we can set the number of pages to the maximum
value then start printing. Each time a page is printed, we check if all of the image
has been output to the printer. If so, we can stop printing.

The advantage of this method is that the actual number of required pages need not
to be decided beforehand. This is especially useful for the situation when data
cannot be formatted before being printed.

By applying this method, we do not need to calculate the number of required
pages in function CGDIView::OnPrepareDC(...). Instead, we can first set it to the
maximum possible value in function CGDIView::OnPreparePrinting(...):

(Code omitted)

Please note that we must use 0xFFFFFFFE instead of 0xFFFFFFFF to set the maximum
page range, the latter will result in printing only the first page.

If we do not add further control, the printing will not stop until 0xFFFFFFFE pages have

been printed. To stop printing after all the image has been printed out, we need to
calculate the total required number of pages and check if the page currently being
printed is the last page in function CGDIView::OnPrint(...). If so, we set the page
range again to stop printing:

(Code omitted)

In our case the number of pages can actually be decided before the printing
begins, so it seems not necessary to stop printing this way. However, for applications
that the number of pages cannot be decided beforehand, this is the only method to
implement multiple-page printing.

12.6 Customizing Print Dialog Box

In this section, we will discuss the topics on how to enhance the user interface for
implementing print set up, which has nothing to do with GDI.

Customizing Common Controls

One customization we want to make is to disable radio buttons labeled "Pages" and
"Selection", along with the edit boxes labeled "from:" and "to:" after the user executes
"File | Print" command (Figure 12-8). This dialog box is implemented by print common
dialog box, which was not discussed in Chapter 7. The purpose of this dialog box is to
let the user setup the printer before the printing task starts. In MFC, the class used to
implement this dialog box is CPrintDialog.

In standard SDI and MDI applications, we don't need to add anything in order to
include the print dialog box. The print dialog box can be used to do either print
setup or printer setup. The constructor of CPrintDialog must have at least one input
parameter, which indicates if the dialog box should be implemented for print setup
or printer setup:

(Code omitted)

Since the initialization procedure of the print dialog box is implemented within other
MFC member functions, as a programmer, we can only modify the dialog box after
it is created. Remember in function CGDIView::OnPreparePrinting(...), one of the
input parameters is a CPrintInfo type pointer. The print dialog box is embedded in this
class. The member used to store the dialog box is CPrintDialog type pointer
CPrintInfo::m_pPD. We can modify any of its member to change the dialog box style
before function CView::DoPreparePrinting(...) is called.

Class CPrintDialog contains a PRINTDLG type object m_pd that allows us to
customize the style of the dialog box. Here structure PRINTDLG is similar to
OPENFILENAME structure of class CFileDialog. It also has a member Flags that allows

us to specify the styles of the print dialog box. Two flags we will use in the sample are
listed in the following table:

(Table omitted)

Sample 12.6-1\GDI is based on sample 12.5-3\GDI, it demonstrates how to disable
these controls. The following is a portion of function CGDIView::OnPreparePrinting(...)
of sample 12.6-1\GDI showing how the styles of the print dialog box are customized:

(Code omitted)

Other styles can also be customized by using this method.

Using Custom Dialog Template

Like other common dialog boxes, we can use our own dialog template to replace
the standard one. This procedure is similar to that of other common dialog boxes. To
use custom dialog template, we need to make changes to the default values of the
following members contained in structure PRINTDLG: 1) Enable
PD_ENABLEPRINTTEMPLATE flag. 2) Assign the custom dialog template name to
member lpPrintTemplateName. 3) Assign the application instance handle to
member hInstance.

Sample 12.6-2\GDI is based on sample 12.5-3\GDI and demonstrates how to use
programmer- provided dialog template to implement print dialog box.

The first step of implementing customized print dialog box is to add a new dialog
template. We can copy this dialog template from file "Commdlg.dll" and modify it.
Please note that we cannot delete the original controls contained in the template. If
we want to hide certain controls, we can either move them out of the template, or
disable them in the dialog box's initialization stage. In sample 12.6-2\GDI, the new
dialog template is PRINTDLG. For the purpose of demonstration, no change is made
to the original template.

The next step is to derive a class from CPrintDialog. If we double click on the dialog
template, we will be prompted to add a new class for it. Since CPrintDialog is not in
the list of base classes, we can first choose CDialog as the base class and change all
the keywords CDialog to CPrintDialog later. Please note that the constructors of
CPrintDialog and CDialog are different, so if we choose automatic method, we also
need to change the constructor created by the Class Wizard. In the sample, the
new class is CPrnDlg. There is no new variable or function added to it because we
don't want to make further modification. The only thing implemented in the new
class is that flags PD_NOPAGENUMS and PD_NOSELECTION are set in the constructor
so that the radio buttons and edit boxes will be disabled. This is the same with sample
12.6-1\GDI.

The place where we can use this dialog box is still in function
CGDIView::OnPreparePrinting(...). Since there is a default print dialog box
implemented, we must delete the old one before we can use our own. After we
allocate memory and implement a new print dialog box, we must assign it to
member CPrintInfo::m_pPD. Also, we must set template name, instance, and enable
PD_ENABLEPRINTTEMPLATE flag. The following shows how the customized print dialog
is implemented in function CGDIView:: OnPreparePrinting(...):

(Code omitted)

With the above implementation, the print dialog box will use the custom dialog
template PRINTDLG.

Summary

1) To capture the screen, we need to obtain a DC of the desktop window, prepare
blank memory bitmap, and call function CDC::BitBlt(...) to make the copy.

2) For palette devices, we must obtain the system palette after a snapshot is taken.
This can be implemented by creating logical palette using PC_EXPLICIT flags.

3) One logical unit can be mapped to different size on the target device. If we use
MM_TEXT mode, one logical unit will be mapped to one physical unit. We can also
use other mapping modes to map one logical unit to an absolute length.

4) To fit the output within the target device, we need to know the resolution of the
device, along with the number of pixels contained in one inch for both horizontal
and vertical directions. These parameters can be obtained by calling function
CDC::GetDeviceCaps(...) and using flags HORZRES, VERTRES, LOGPIXELSX and
LOGPIXELSY.

5) If we want the output image to have the same size on any type of target devices,
we need to use a mapping mode other than MM_TEXT.

6) If the number of pages is fixed for printing output, we can call
CPrintInfo::SetMaxPage(...) in function CView::OnPreparePrinting(...) to set the page
range. The page number will be passed to function CView::OnPrint(...) to let us
customize the print output.

7) If the number of pages can only be decided just before the printing starts, we can
call CPrintInfo::SetMaxPage(...) in function CView::BeginPrinting(...) or
CView::OnPrepareDC(...).

8) If the number of pages must be decided when the printing is undergoing, we can

set the page range to its maximum value before the printing starts, and call
CPrintInfo::SetMaxPage(...) to stop printing dynamically in function
CView::OnPrint(...).

BACK TO INDEX

Chapter 13 Adding Special Features to
Application

Normal applications created by Application Wizard cannot satisfy us all the time. For
certain types of applications, we need to add special features to our programs.
Since Application Wizard or Class Wizard does not directly support these features, we
need to have in-depth knowledge on Windows(programming in order to customize
standard applications. In this chapter, we will discuss how to create applications with
special features such as multiple documents, multiple views, irregular-shaped
window, customized non-client area. Also, we will discuss how to implement hook in
the applications.

13.1 One Instance Application

By default, a Windows(application is allowed to have multiple instances working
simultaneously. Most of the time this is the desired feature of an application. For
example, a word processing program may have several instances working together,
each editing a different file. But sometimes we may want an application to have
only one instance working at any time, this is especially true for some
communication programs. For example, for a file server application, if we allow two
servers to work together at the same time, it may cause the inconsistency on the
data contained in the files.

Window Creation

To implement one instance application, we must understand how the applications
are created under Windows(. This is easily understood if we have the experience of
writing Win32 Windows(applications. However, if we started everything from MFC, it
is not very obvious how a window is created because MFC hides everything from the
programmer. Although it is relatively easy to create an application by deriving
classes from MFC without caring about the actual procedure of creating windows, if
we rely too much on MFC, we also lose the power of customizing it.

Every visual object that is created under Windows(is a window. This includes the
frame window, tool bar, menu, view, button and other controls. Actually, MFC is not
the only tool that can be used to create windows. A window can be created by
using any computer language such as C, Basic, Pascal so long as it abides by the

rules of creating windows.

Under Windows(, a window can be described by structure WNDCLASS:

typedef struct _WNDCLASS {

UINT style;

WNDPROC lpfnWndProc;

int cbClsExtra;

int cbWndExtra;

HANDLE hInstance;

HICON hIcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPCTSTR lpszMenuName;

LPCTSTR lpszClassName;

} WNDCLASS;

Member style specifies window styles, by setting different bits of this member we can
create different type of windows. There are many styles that can be combined
together, two most often used styles are CS_HREDRAW and CS_VREDRAW, which will
cause the client area to be updated if the user resize the window in either horizontal
or vertical direction. Member lpfnWndProc points to a callback function that will be
used to process the incoming messages. When a window is created, it should
contain several default objects: 1) icon, which will be used to draw the application
when it is minimized; 2) cursor, which will be used to customize the mouse cursor
when it is located within the client window of the application; 3) default mainframe
menu; 4) brush, which will be used to erase the client area (This brush specifies the
background pattern of the window). The above objects are described by following
members of structure WNDCLASS respectively: hIcon, hCursor, hbrBackground and
lpszMenuName.

Another very important member is lpszClassName, which describes the type of the
window we will create. Every window under Windows(has a class name. Before

creating a new type of window, we must register its class name to the system. After
that we can use this class name to implement an instance of window. A class name
is simply a string, which can be specified by the programmer.

If we write windows program in C, we must go through the following procedure in
order to create a new window: register the window class name, implement a
message handling routine, use the registered window class name to implement a
new window instance. In MFC, this procedure is hidden behind the classes, when we
use a class derived from CWnd to declare a variable, the class registration is
completed sometime before the window is created. Also, we do not need to
provide message handling routines because there exist default message handlers in
MFC. If we want to trap certain messages, we can add member functions and use
message mapping macros to associate the messages with functions.

It is relatively easy to implement one-instance application by programming in C:
before registering a window class, we can first find out if there exists any instance
implemented by the same class name in the system. If so, we simply exit and do not
go on to create a new window. If not, we will implement the new window.

However, in MFC, we do not see the class registration procedure, so it is difficult to
manipulate it. Also, in MFC, all the window class names are predefined, so we
actually can not modify them. In order to create one-instance application, we need
to discard the default registered window class name, and use our own class name
to create new instance. By doing so, we are able to check if there already exists an
instance of this window type before creating a new one.

Function CWnd::PreCreateWindow(...)

The styles of a window (including the class name) can be modified just before it is
created. In MFC, function CWnd::PreCreateWindow(...) can be overridden for this
purpose.

The input parameter of CWnd::PreCreateWindow(...) is a CREATESTRUCT type
variable, which is passed to the function by reference:

virtual BOOL CWnd::PreCreateWindow(CREATESTRUCT& cs);

Structure CREATESTRUCT contains a variety of window styles:

typedef struct tagCREATESTRUCT {

LPVOID lpCreateParams;

HANDLE hInstance;

HMENU hMenu;

HWND hwndParent;

int cy;

int cx;

int y;

int x;

LONG style;

LPCSTR lpszName;

LPCSTR lpszClass;

DWORD dwExStyle;

} CREATESTRUCT;

We can specify a new menu and use it as the mainframe menu. We can set the
initial size and position of the window. We can also specify window name, and
customize many other styles. Within the structure, the window class name is specified
by member lpszClass. By default, this structure is stuffed with standard values,
however, we can change any of them to let the application have new styles. For
example, if we want to use "My class" as the class name of our application rather
than using the default one, we need to implement the overridden function as
follows:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass="My class";

return CMDIFrameWnd::PreCreateWindow(cs);

}

One-Instance Application in MFC

In MFC, one-instance application can be implemented as follows: before the

application is implemented, we need to find out if there is any registered application
that uses specified window class name: if so, we should exit; otherwise, we can
proceed to register our own window class name, and override function
CFrameWnd::PreCreateWindow(...) to change the default class name to the new
one. By doing so, an application can have only one instance implemented in the
system at any time.

In MFC, an application starts from class CWinApp. After an application is executed,
the very first function being called is the constructor of the class derived from
CWinApp. Of course we can implement class name checking and registration here.
However, a better place is in function CWinApp::InitInstance(), where the
application is being initialized. For SDI and MDI applications, the mainframe window,
document and view are implemented and bound together here, for dialog box
based applications, the main dialog box is also implemented within this function.

Sample 13.1\Once

Sample 13.1\Once is a standard MDI application generated by Application Wizard,
it demonstrates how to implement one-instance MDI application. The application
has no functionality except that if we try to activate more than one copy of this
application, instead of creating a new instance, the existing one will always be
brought up and become active.

Instead of using default class name, we need to register a custom class name to the
system. The first thing we need to do before frame window, document and view are
implemented is to look up if there exists an application with the same class name in
the system:

(Code omitted)

Function CWnd::FindWindow(...) is called to find the application with the same class
name in the system. This function allows us to search windows with specific class
name and/or window name. It has the following format:

static CWnd *CWnd::FindWindow(LPCTSTR lpszClassName, LPCTSTR
lpszWindowName);

We can pass NULL to window name parameter (lpszWindowName) to match only
the class name. If the pointer returned by this function is not NULL, we can activate
that window, bring it to top, and activate all its child windows. This procedure is
implemented by calling the following functions: 1) CWnd:: GetLastActivePopup(),
which will find out the most recently activated pop-up window. 2) ::ShowWindow(...),
which will restore the original state of the window being minimized (parameter
SW_RESTORE can be used for this purpose). 3) CWnd::SetForegroundWindw(), which
will bring the child window to foreground if there is a such kind of window. Steps 1)

and 3) are necessary here because a mainframe window may own some pop up
windows (For example, a dialog box implemented by a command of the mainframe
menu). Once the mainframe window is brought to the top, we also need to bring its
child pop up window to foreground.

After this is done, we need to return a FALSE value, which indicates that the
procedure of creating mainframe window, document and view is not successful. This
will cause the application to exit.

If no window with the same class name is found, we can proceed to register our own
window class. This can be done by stuffing a WNDCLASS type object and passing
the object address to function AfxRegisterClass(...), whose only parameter is a
WNDCLASS type pointer:

BOOL AFXAPI AfxRegisterClass(WNDCLASS *lpWndClass);

In order to make sure that our application is the same with those implemented by
default MFC window classes, we must stuff the class with appropriate values. Here is
how this is done in the sample:

(Code omitted)

The class name string is defined using ONCE_CLASSNAME macro. Of course, when
we override function CMainFrame::OnPreCreateWindow(...), we need to replace
the default class name with it. The following code fragment shows how this function
is overridden in the sample:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass=ONCE_CLASSNAME;

return CMDIFrameWnd::PreCreateWindow(cs);

}

Before the application exits, we must unregister the window class if it has been
registered successfully. For this purpose, a Boolean type variable m_bRegistered is
declared in class COnceApp, which will be set to TRUE after the class is registered
successfully. When overriding function CWinApp::ExitInstance() (which should be
overridden if we want to do some cleanup job before the application exits), we
need to unregister the window class name if the value of m_bRegistered is TRUE. The
following is the overridden function implemented in the sample:

(Code omitted)

That's all we need do for implementing one-instance application.

13.2 Creating Applications without Using Document/View Structure

Document/View structure provides us with much convenience on data storing and
interpreting. But sometimes using this structure is burdensome, especially when we
want to implement just a very simple application. For example, if we want to display
a fixed content in the client window and do not want to write any data to the disk,
there is no need to implement document in the application at all.

How Application, Document and View Are Bound Together

Although it seems that document and view are inborn for SDI or MDI applications,
we do have way to get rid of them. Actually, the document and view are created in
function CWinApp::InitInstance(...) and bound to mainframe window there. The
following shows standard implementation of a typical SDI application, if we examine
the SDI applications created before, we will find the following code in all of them:

(Code omitted)

Class CSingleDocTemplate binds together the mainframe window, view and
document. It creates view and makes it client of the frame window. Obviously, by
eliminating these statements, we are able to create our own client window without
bothering to use document and view.

Creating Window

However, if we do not let the framework to create the mainframe window and a
client window for us, we have to do it by ourselves. Fortunately creating a window is
not so difficult, we can call function CFrameWnd::Create(...) at any time to
dynamically create a window with both title bar and client window:

virtual BOOL CFrameWnd::Create

(

LPCTSTR lpszClassName, LPCTSTR lpszWindowName, DWORD dwStyle, const RECT&
rect, CWnd* pParentWnd, UINT nID, CCreateContext* pContext = NULL

);

Here, we are asked to provide some information of the window that is about to be

created. This includes class name, window name, window styles, window position
and size, etc. The class name must be a registered one. Although we can register
our own window class name as we did in the previous section, we can also pass
NULL to parameter lpszClassName to let the default registered class name be used.
Also, we can pass NULL to parameter dwStyle to use the default window style, and
pass rectDefault to parameter rect to let the window have default position and size.

Sample 13.2\Gen

Sample 13.2\Gen demonstrates how to create applications without using
document/view structure. Originally it is a standard SDI application generated by
Application Wizard. Then it is modified to become an application that does not use
document/view implementation.

Rather than creating mainframe window then using view as its client window, in the
sample, only a mainframe window is created by calling function
CFrameWnd::Create(...). This can be done in the constructor of class CMainFrame.
In sample 13.2\Gen, the constructor is modified as follows:

(Code omitted)

We must provide a window name, which will be displayed in the caption bar of the
window. In standard SDI or MDI applications, this string can be obtained from string
resource IDR_MAINFRAME. To make the sample similar to a standard application, we
can load this string and use it as the window name. Since we will not support any file
type, in the sample string resource IDR_MAINFRAME contains only one simple string
(This means it does not contain several sub-strings that are separated by character
'\n' as in standard SDI or MDI applications).

For a simple application, there is no need to implement status bar and tool bar any
more, so function CMainFrame::OnCreate(...) is removed, and variables
CMainFrame::m_wndStatusBar, CMainFrame:: m_wndToolBar along with another
global variable indicators are also deleted.

For any application implemented by MFC, it is originated from class CWinApp. This
class has a CWnd type member pointer m_pMainWnd. When the mainframe
window is created, its address is stored by this pointer. If we want to create window
by ourselves, we must do the same thing in order to let the rest part of our
application have MFC features.

With the above implementation, function CGenApp::InitInstance(...) can be greatly
simplified, what we need to do here is implementing a CMainFrame type object,
assigning its address to CGenApp:: m_pMainWnd, then calling functions
CWnd::ShowWindow(...) and CWnd::UpdateWindow(...) to display the window. This
last step is necessary, if we omit it, the window will not be displayed. The following is

the modified function in the sample:

(Code omitted)

Here variable m_nCmdShow indicates how the window should be displayed
(minimized, maximized, etc). It must be passed to function CWnd::ShowWindow(...)
in order to initialize the window to a specified state.

Excluding Classes from Build

Although we do not need to use view and document classes anymore (CGenView
and CGenDoc in the sample), it is difficult to remove them from the project once
they are generated automatically. However, we can change the project settings so
that the two classes will not be complied when the project is being built. This can be
achieved through following steps: 1) Executing command Project | Settings.... 2)
From the popped up dialog box, expand "Source Files" node in "Settings For:"
window. 3) Select "GenView.cpp" and click on "General" tab on the right part of the
dialog box. 4) Check "exclude file from build" check box (Figure 13-1). We can do
the same thing for file "GenDoc.cpp" to exclude class CGenDoc from build.

Now there is no view in the application. If we want to output something to the client
window, we have to implement it in class CMainFrame. Of course, there is no
member function OnDraw(...) to override any more. In order to output anything to
the client window, we need to override function CMainFrame:: OnPaint(...), which is
the handler of WM_PAINT message. We have to prepare DC by ourselves, and, if we
want, we need to add scroll bars and calculate the offset positions all by our own.
By eliminating the document and view, we have a simple implementation of the
application and a smaller executable file. But if we need a simple feature that is not
supported by MFC, we have to implement everything by ourselves.

13.3 Implementing Multiple Views

Sometimes we do not want the default document/view implementation, but
sometimes we need more than standard features. One thing we might think about
when creating MDI applications is: is it possible to implement different types of views
to interpret data stored in the document? A typical example of this is that we can
use both "bar chart" and "pie chart" to interpret percentages (Figure 13-2).

Simple View Implementation

Since the document/view creating and binding procedure is not the task of
programmer (when Application Wizard is used), it is easy to be neglected. The code
for creating document and view then binding them together resides in function
CWinApp::InitInstance(). For example, if we create an MDI application named
"Chart", by default, the CWinApp derived class will be named CChartApp, also, the

document and view classes will be named CChartView and CChartDoc
respectively. In member function CChartApp::InitInstance(), the above objects are
bound together by class CMultiDocTemplate:

(Code omitted)

The constructor of class CMultiDocTemplate has four parameters, the first of which is
a string resource ID, which comprises several sub-strings for specifying the default
child window title, document type, and so on. The rest three parameters must use
RUNTIME_CLASS macro, and we can use the appropriate class name as its
parameter. In the code listed above, the child window uses class CChildFrame to
create the frame window, and uses CChartView to create the client window. The
child window is attached to the document implemented by class CChartDoc.

Attaching Multiple Views to One Document

If we need only one type of view, this is enough. However, if we want to attach
multiple views to a single document, we can call function
CWinApp::AddDocTemplate(...) again to bind a new type of view to the document.

Sample 13.3\Chart

Sample 13.3\Chart demonstrates how to attach multiple views to one document. It
is a standard MDI application generated by Application Wizard. The purpose of this
application is to interpret data stored in the document in different ways. The original
classes generated by Application Wizard are CChartApp, CChartDoc, CChartView,
CMainFrame and CChildFrame. After the application skeleton is generated, a new
class CPieView (derived from CView) is add to the application through using Class
Wizard.

Data stored in the document is very simple, there are three variables declared in
class CChartDoc: CChartDoc::m_nA, CChartDoc::m_nB and CChartDoc::m_nC. The
variables are initialized in the constructor as follows:

(Code omitted)

Three variables each represents a percentage, so adding them up will result in 100.
There are many different types of charts that can be used to interpret them, two
most common ones are "bar chart" and "pie chart".

In the sample application, two different types of views are attached to one
document, so the user can use either "Bar chart" or "Pie chart" to view the data. To
obtain data from the document, function CChartDoc::GetABC(...) is implemented
to let these values be accessible in the attached views.

In function CChartView::OnDraw(...), three bars are drawn using different colors,
their heights represent the percentage of three member variables. For class
CPieView, three pies are drawn in different colors and they form a closed circle,
whose angles represent different percentages.

Two views are attached to the document in function CChartApp::InitInstance().
Besides the standard implementation, a new document template is created and
added to the application. The following portion of function
CChartApp::InitInstance() demonstrates how the two views are attached to the
same document:

(Code omitted)

With the above implementation, when a new client is about to be created, the user
will be prompted to choose from one of the two types of views. Here strings that are
included in the prompt dialog box should be prepared as sub-strings contained in
the string resources that are used to identify document type (IDR_CHARTTYPE and
IDR_PIETYPE in the sample).

The format of the document type string is the same with that of a normal MDI
application, which comprises several sub-strings. The most important ones are the
first two sub-strings: one will be used as the default title of the client window and the
other will be used in the prompt dialog box to let the user select an appropriate view
when a new client window is about to be created. In the sample, the contents of
string IDR_CHARTYPE and IDR_PIETYPE are as follows:

\nBar\nBar\n\n\nChart.Document\nChart Document

\nPie\nPie\n\n\nChart.Document\nChart Document

Both the window and the string contained in the prompt dialog box for chart view
are set to "Bar", for pie view, they are set to "Pie".

Window Origin and View Port Origin

When implementing drawing on the target device, sometimes it is more convenient
if we use appropriate coordinate system. As a programmer, when we write code to
draw geometrical shapes, we are always working on Page-Space (logical space).
The actual output would happen on Device-Space. By default, one logical unit is
mapped to one device unit, and both origins are located at upper-left corners.

When drawing certain types of geometrical shapes, for example, a circle, it would
be more convenient if we adjust the origin of the coordinate system so that it is
located at the center of the circle (See Figure 13-3).

To offset origin in either page-space or device-space, we can use the following
functions:

(Table omitted)

It is the ratio, rather than their absolute values, of window extents and view port
extents that specify how a logical unit will be mapped in horizontal as well as vertical
directions. It is important that if use MM_ISOTROPIC mode, after calling function
CDC::SetMapMode(...), CDC::SetWindowExt(...) needs to be called before
CDC::SetViewportExt(...).

Pie Chart Drawing

In the sample, we need to draw three pies that form a circle. Since we need to
calculate the starting and ending points for each pie, it would be convenient if the
origin of the coordinate system is located at the center of the circle. Also, to assure
that the circle will not change to ellipse on any device, we need to set
MM_ISOTROPIC mapping mode.

The following is the implementation of function CPieView::OnDraw(...):

(Code omitted)

In the above code, first MM_ISOTROPIC mode is set. Then the window extents is set to
(100, 100). To map one logical unit to an absolute size, function CDC::GetDevice(...)
is called using both LOGPIXELSX and LOGPIXELSY parameters. This will cause the
function to return the number of pixels per logical inch in both horizontal and vertical
directions. Then we use the returned values to set view port extents. This will cause
100 logical units to be mapped to 1 inch in both horizontal and vertical directions. By
doing this, no matter where we run the program, the output will be the same
dimension.

When calling function CDC::SetViewportExt(...), we set the vertical extent to a
negative value. This will change the orientation of the y-axis so that the positive
values locate at the upper part of the axis (See Figure 13-3).

Next, function CDC::SetViewportOrg(...) is called to set the device origin to the
center of the window. This will simplify the calculation of starting and ending points
when drawing pies.

13.4 Multiple Documents Implementation

Not only can we implement an application with more than one type of views, but
also implement an application that supports more than one type of documents. For
example, generally a graphic editor needs to support several types of image files,

such as bitmap and GIF files. Although we can support all file formats within one
document, for MDI applications, the source code will become easy to manage if we
use one document type to support one file format.

Actually, the procedure of implementing more than one document is almost the
same with adding more than one view to an application. All we need to modify is
still function CWinApp::InitInstance(), within which we must create a new document
template and call function CWinApp::AddDocTemplate(...) to bind the new
document (along with a view) to the mainframe window.

From the sample application created in the previous section, we know that when a
new document template is being created, we need to provide a resource ID, a
document class name, a view class name, and a frame window class name. If we
look at the menu and icon resources of an MDI application, we will find that ID
IDR_MAINFRAME is used in three different places: there is a string resource using this
ID, which will be used as the mainframe window caption text; there is a menu
resource using this ID, which will be used to implement the application's main menu
(when there is no child window open); there is an icon resource using this ID, which
will be put to the top-left corner of the application (left side of the title bar).

When a document template is created, we also need to provide a resource ID,
which will be used to implement the above resources when the client window is
open. Like IDR_MAINFRAME, the corresponding string resource will be used to display
the title of the child frame and document type; the menu resource will be used to
implement application menu when the corresponding client window is open; the
icon resource will be displayed in the top-left corner on the client window.

We may have noticed that in the previous sample, when we open a window
implemented by class CPieView, the mainframe menu will be changed to
IDR_MAINFRAME, and the top-left icon is a general icon. This is because we didn't
prepare menu and icon resources for ID IDR_PIETYPE.

Sample 13.4\Chart is based on sample 13.3\Chart and demonstrates how to further
support a new type of document in the application.

In the sample, just for the purpose of demonstration, a new type of document is
added without implementing anything (It does not contain any data). Although it is
a dummy document, by attaching a CEditView type view to it we know that several
documents can co-exist in one application.

The class name of the new document is CTextDoc, and is added through using Class
Wizard. The view that will be associated with it is CTextView, which is derived from
class CEditView. No special change is made to the two classes. In function
CChartApp::InitInstance(), after two views are attached to class CChartDoc, the
new view is attached to the new document and they are bound together to the

mainframe window:

(Code omitted)

Besides this, we also added following resources to the application: icons IDR_PIETYPE
and IDR_TEXTTYPE; menus IDR_PIETYPE and IDR_TEXTTYPE; string IDR_TEXTTYPE.

13.5 Painting Caption Bar

Non-client Area and Related Messages

The caption (title) bar belongs to non-client area of a window. Actually, any window
can be divided into client and non-client areas. By default, the application itself is
responsible for implementing client area painting, and the system is responsible for
non-client area painting. The non-client area includes caption bar, menu, frame and
border.

Generally an application should not paint the non-client area. But sometimes we do
need to customize the default implementation to create some special effects. While
the client area painting is managed by message WM_PAINT, non-client area has a
counterpart message WM_NCPAINT.

When painting the caption bar, we need to pay attention to the current window
states. By default, a window's caption bar is painted with blue color if the
application is in the foreground (In other word, when the application is active), and
painted with gray color if it is in the background (When it is inactive). When
customizing the caption bar, we also need to put some indication on it to distinguish
between the above two states.

When painting the non-client area, the message used to distinguish active and
inactive states of a window is WM_NCACTIVE. Its WPARAM parameter indicates
whether the caption bar needs to be painted to indicate active or inactive state: if it
is 0, the application is about to become inactive; otherwise the application is about
to become active. Please note that in the latter case, the non-client area painting
should not be processed. The active state of the non-client area should always be
painted after receiving message WM_NCPAINT (instead of WM_NCACTIVE).

Since we only want to change the appearance of default caption bar, we will let
the rest non-client area be painted by default implementation. To do this, after
receiving WM_NCPAINT and WM_NCACTIVATE messages, we can first call the
default message handlers (Which will cause the non-client area to be painted by
the default method), then paint the caption bar using our own implementation.

The default handlers of the above two messages are functions CWnd::OnNcPaint()
and CWnd:: OnNcActivate(...). By default, they paint the caption bar, draw the icon

and system buttons on the caption bar, draw the frame and border.

The other two messages we must handle are WM_SETTEXT and WM_SYSCOMMAND.
The first command corresponds to the situation when the caption text is first set or
when it is changed. The second message corresponds to the situation when the
application resumes from the iconic state to its original state. In the above two
cases, after message WM_NCPAINT is sent to the application, the text will be put
directly to the caption bar.

Caption Text Area

Figure 13-4 shows the composition of a caption bar: the outer frame, within which
there is an icon located at the left side, and three system buttons located at the
right of the caption bar. The minimize button and the maximize button are abut
together, also, there is a space between them and the close button. By default, the
caption text is aligned to the left.

The position and size of a caption window can be obtained by calling function
CWnd:: GetWindowRect(...). We need to exclude the frame, icon and buttons in
order to calculate the area where we can put the caption text.

So the actual caption text area can be calculated as follows:

left position =

(

left position of the caption window +

border width +

system button horizontal size +

frame width

)

top position = top position of the caption window + frame height

right position =

(

right position of the caption window -

border width -

frame width -

3*(system button horizontal size)

)

bottom position = top position + vertical size of the caption

If we use window DC, the coordinates of the window's top-left corner are (0, 0), this
will simplify our calculation.

Please note that we must use class CWindowDC to create DC for painting the non-
client area rather than using class CClientDC. Class CClientDC is designed to let us
paint only within a window's client area, so its origin is located at left-top corner of
the client window. Class CWindowDC can let us paint the whole window, including
both client and non-client area.

Sample 13.5\Cap

Sample application 13.5\Cap demonstrates this technique. It is a standard SDI
application generated by Application Wizard, and its caption window is painted
yellow no matter what the corresponding system color is (The default caption bar
color can be customized by the user). The modifications made to the application
are all within class CMainFrame, and there are altogether four message handlers
added to the application: CMainFrame::OnNcPaint() for message WM_NCPAINT,
CMainFrame::OnNcActivate(...) for message WM_NCACTIVATE,
CMainFrame::OnSetText() for message WM_SETTEXT and CMainFrame::
OnSysCommand(...) for message WM_SYSCOMMAND.

The function implemented for drawing caption text is
CMainFrame::DrawCaption(...). This function has one COLORREF type parameter
color, which will be used as the text background. Within this function, several system
metrics are obtained, which will be used to calculate caption text area later:

(Code omitted)

The caption text is obtained by combining the name of currently opened document
with the string stored in resource AFX_IDS_APP_TITLE. Here resource AFX_IDS_APP_TITLE
stores application name, and function CDocument::GetTitle() returns the name of
currently opened document.

Then the area where we can put caption text is calculated and stored in a local
variable rectDraw. Before drawing the text, we need to fill it with the background
color:

(Code omitted)

Since the DC is created using class CWindowDC, the coordinates of the window's
origin are (0, 0). Before drawing the text, we need to set the text background mode
to transparent. Also, in the sample, when the caption text is being drawn, it is
centered instead of being aligned left:

(Code omitted)

Function CMainFrame::DrawCaption() is called in several places. When
WM_NCACTIVATE message is received and the window state is about to become
inactive, we paint the caption bar with cyan color. When WM_NCPAINT message is
received, the caption bar is painted with yellow color.

Also, when WM_SETTEXT or WM_SYSCOMMAND messages are received, the caption
needs to be updated. So within the two message handlers, message WM_NCPAINT is
sent to the mainframe window:

(Code omitted)

Figure 13-5 shows the result of the above implementation.

(Figure 13-5 omitted)

13.6 Irregular Shape Window

Theoretically speaking, all windows created in Windows(system must be
rectangular. This satisfies our needs most of the time. However, sometimes it would
be more preferable to let windows have irregular shapes. For example, in multimedia
type applications, sometimes we need to implement a special elliptical (or more
complex shape) "callout" window with a pointer pointing to an object, with the
explanation of the object displayed within the ellipse. The user may feel free to resize
or move this window, and edit the text within it (Figure 13-6).

Problem

To implement such type of window, we can let the application paint only within the
elliptical area and leave the rest area unchanged.

However, this will cause problem when the user moves or resizes the window.
Although only the elliptical area is painted, the window is essentially rectangular. By
default, the portion not covered by the ellipse will be treated as the background (It
is not updated when message WM_PAINT is received). The application itself can
handle WM_ERASEBKGND message to update the background. To let the window
have an irregular shape, instead of painting this area with any pattern, we need to
make it transparent. In order to achieve this, we shouldn't do anything after
receiving message WM_ERASEBKGND. However, this still will cause new problem
when the window is moved or resized: since the application does not update its
background client area, original background pattern will remain unchanged after
moving and resizing (This will cause something doesn't belong to the window
background to move along with it).

Style WS_EX_TRANSPARENT

A window's background could be made transparent by using style
WS_EX_TRANSPARENT when we create a window by calling function
CWnd::CreateEx(...). Unfortunately, in MFC, the window creation procedure is
deeply hidden in the base classes. Although it is very easy to create special windows
such as frame windows, views, dialog boxes, buttons, we actually have very few
controls over their styles.

Another difficult thing is that, if we want to create an irregular shape window,
normally we do not want it to have caption bar. If we want to create the window by
ourselves instead of using MFC, we need to choose appropriate window styles and
take care everything by ourselves, which may be a very complex issue.

Using Dialog Box

To simplify this procedure, we can start from creating a dialog box and change it to
an irregular shape window. Since dialog box is also a type of window, it has all the
customizable styles belonging to a normal window (A dialog box does not have to
contain any common controls).

In property sheet "Dialog Properties", we have a lot of choices for changing the styles
of a dialog box. This property sheet contains several pages such as "General",
"Styles", "More Styles" and "Extended Styles". Within each property page, we can set
different window styles. The following table lists some important issues need to be
takern into consideration when designing a window with irregular shape:

(Table omitted)

All other styles remain unchanged, we need to use default settings for them.

Sample 13.6\Balloon is implemented this way. It is a dialog box based application

generated by the Application Wizard, and the two classes used to implement the
application are CBalloonApp and CBalloonDlg. After the skeleton is created we can
open the default dialog box template (In the sample, the template is
IDD_BALLOON_DIALOG), remove the default buttons and controls, then customize
the window styles as mentioned above.

Disabling Default Background Painting

By default, class CDialog will paint the background with gray color (button face
color), although the dialog box's background is transparent, the client area will still
be painted with default brush when being erased. Thus we will see temporary gray
background when the dialog box is being resized or moved. To prevent the
background from being erased with brush, we need to handle message
WM_ERASEBKGND to bypass the default background erasing activities. In the
sample, this message is mapped to function CBalloonDlg:: OnEraseBkgnd(...), which
does nothing but returning a TRUE value to give the system an impression that the
background erasing has completed:

BOOL CBalloonDlg::OnEraseBkgnd(CDC *pDC)

{

return TRUE;

}

Disabling Non-client Area Painting

We also need to pay attention to non-client area. Although the window does not
have a caption bar, it has resizable border, which also belongs to non-client area. By
default, the border will be painted as a 3D frame, which can be used for resizing the
window. To make it transparent, we need to handle message WM_NCPAINT. We
don't need to provide any implementation here because there is nothing to be
painted. In the sample, this message is handled in CBalloonDlg::OnNcPaint(), which
is an empty function:

void CBalloonDlg::OnNcPaint()

{

}

We do need to override CBalloonDlg::OnPaint() to paint the elliptical area. Within
this function, an ellipse is drawn in the client area, also a pointer is drawn at the left
bottom corner. Both ellipse and its pointer are painted using yellow color.

Moving the Window with Mouse

Because the application does not have caption bar, we must provide a method to
let the window be moved through using mouse. This should be implemented by
handling three messages: WM_LBUTTONDOWN, WM_LBUTTONUP and
WM_MOUSEMOVE. When the left button is pressed down, we need to set the
window capture. As the mouse moves (with left button held down), we need to
move the window according to the new mouse position by calling function
CWnd::MoveWindow(...). When the left button is released, we need to release the
window capture.

Two variables are declared in class CBalloonDlg for this purpose: Boolean type
variable CBalloonDlg::m_bCapture and CPoint type variable
CBalloonDlg::m_ptMouse. Here, CBalloonDlg:: m_ptMouse is used to record the
previous mouse position. Whenever the window needs to be moved, we call
function CWnd::GetWindowRect(...) to obtain its current position and size, then offset
the rectangle (The size and position of the window is stored in a CRect type variable)
according to both current and previous mouse positions, and update variable
CBalloonDlg::m_ptMosue. Since all the calculation is carried out in the desktop
coordinate system, we need to call function CWnd::ClientToScreen(...) to convert
the mouse position before using it (Mouse position is passed to the message handlers
in the coordinate system of the application window). The following is the
WM_MOUSEMOVE message handler implemented in the sample:

(Code omitted)

This implementation is slow, because when mouse moves a small distance, the
whole window need to be redrawn at the new position. An alternative solution is to
draw only the rectangular outline when mouse is moving (with the left button held
down), and update the window only when the left button is released. To implement
this, instead of calling function CWnd::MoveWindow(...) in WM_MOUSEMOVE
message handler, we need to call function CDC::DrawDragRect(...) to erase the
previous rectangle outline and draw a new one.

For this sample, as the left button is clicked on any portion of the rectangular
window area, the application will respond. If we want the window to be movable
only when the clicking happens within the elliptical area, we need to use region. To
implement this, instead of calling function CRect::PtInRect(...), we can call
CRgn::PtInRegion(...) to respond to the left button clicking. Also, if we want to make
resizing more flexible, we can test if the mouse cursor is over the border of the ellipse
rather let the resizing be handled automatically (By default, window's rectangular
frame will be used as the resizing border). To implement this, we need to change
mouse cursor's shape when it is over the border of the ellipse, set capture when the
left button is pressed down, release capture when the button is released, and resize

the window according to the mouse movement.

Although the application does not resemble a dialog box, we can still find some of
its features: it can be closed by pressing ENTER or ESC key. To modify this feature, we
need to override function CDialog::OnPreTranslateMsg(...). If we implement this, we
must provide a way to close the window, otherwise the user has to ask OS to end its
life everytime.

13.7 Saving Initial States

It would be preferable to let the application remember its current states when being
closed, and resume them next time it is activated. This feature is especially useful for
an editor-like application. Generally, we need to save the mainframe window's size,
position, and state (is it minimized or maximized?). If there is splitter window
implemented in the application, we also need to remember the size of each
individual pane. Besides this, we can make the application more attractive by
saving information of each tool bar, which include the on/off state, docking state,
size and position.

Where to Save the Information

To save this kind of information, we need to write it to hard disk when the application
exits. Of course we can manage this by opening a file and write our data to it.
However, under Windows(, there is a better way to implement it. We can either store
all the information in an ".ini" file under certain directory or store it in the registry. The
latter is a better solution because this will make the file system much cleaner. For
every application generated by Application wizard, we can find the following
statement in function CXXXApp::InitInstance():

SetRegistryKey(_T("Local AppWizard-Generated Applications"));

This will set a registration key in the registry, all the information stored by the
application will be under this key. In the above statement the registration key is
"Local AppWizard-Generated Applications". By default, all the applications
generated by the Application Wizard will share this key. If we want the application to
use a different key, we can simply change this default string.

Functions Used to Write and Read Information

We have four standard functions to save and load the information. By using these
functions, we can either save a string or an integer, and read them back:

(Code omitted)

Functions CWinApp::WriteProfileInt(...) and CWinApp::GetProfileInt(...) can be used

to save and load integers, and the rest two functions can be used to save and load
strings.

Format of ".ini" File

The stored information is organized into sections and entries, we can save relevant
information under one section using different entries. For example, the following is a
portion of an ".ini" file, within which the window size, position and splitter window
information is stored:

[Window Position]

Window Position=0, 0, 200, 200;

Window State=Normal;

[Splitter Window]

Vertical Size=100;

There are two sections here, the section keys are "Window Position" and "Splitter
Window" respectively. Under "Window Position" section, there are two entries, the first
is "Window Position" and the second is "Window State", both of them store strings. The
second section is "Splitter Window", it has only one entry "Vertical Size", which stores
an integer. When we store and retrieve a particular entry, we need to provide the
correct section key and entry key.

Sample 13.7\Ini

Now that we know how to save and load the information, we need to find out what
kind of information need to be saved. Sample 13.7\Ini demonstrates how to create
an application that can resume its previous states including the window state
(minimized, maximized, or normal state), size, position and the states of the tool bar.
It is a standard SDI application generated by Application Wizard, which has a
default tool bar. Its client window is implemented by a two-pane splitter window.

The most appropriate place to save the state information is before the application is
about to exit. This corresponds to receiving message WM_CLOSE, which indicates
that the application will terminate shortly. Since most information concerns the top
parent window of the application, it would be more convenient if we handle this
message in the mainframe window.

To retrieve a window's position and size, we can call function
CWnd::GetWindowRect(...). The values obtained through calling this function will be
in the coordinate system of the desktop window. When the application is invoked

next time, we need to call function CWnd::MoveWindow(...) to resume its previous
position and size. This should be handled in function CMainFrame::OnCreate(...). The
following two functions show how the frame window information is saved and
loaded:

(Code omitted)

The window state information is retrieved by calling functions CWnd::IsIconic() and
CWnd:: IsZoomed(). If both of them return FALSE, the window is in normal state. To set
the window to zoomed or iconic state, we need to set variable
CIniApp::m_nCmdShow to either SW_SHOWMINIMIZED or SW_SHOWMAXIMIZED in
function CWinApp::InitInstance()(This variable is declared in base class CWinApp).
The following portion of function CIniApp::InitInstance() shows how the window state
is set:

(Code omitted)

Finally, saving and loading the states of tool bar is very simple, all we need to do is
calling function CFrameWnd::SaveBarState(...) to save the tool bar state after
receiving message WM_CLOSE and calling function CFrameWnd::LoadBarState(...)
in CFrameWnd::OnCreate(...) to load them. No matter how many tool bars are
implemented in the application, all of their states will be saved and loaded
automatically. The following code fragment demonstrates this:

(Code omitted)

With the above implementation, the application is able to remember its previous
states.

13.8 Exchanging User-Defined Messages Among Applications

We all know that standard Windows(messages can be sent to other windows by
calling functions CWnd::SendMessage(...) and CWnd::PostMessage(...), we also
know that we can create user defined messages that can be used within one
process. However, user defined messages can only be sent within one application,
there is no way to send them to other applications.

Registering User Defined Messages

Under Windows(, there are several ways to share information and data among
several processes, among them sending message is the simplest one. If we want to
share user-defined messages among different processes, rather than defining a
message with ID greater than WM_USER, we need to register the messages to the OS
so that they are unique in the whole system.

The function used for registering user defined messages is
::RegisterWindowMessage(...). The input parameter to this function should be anull-
terminated string, and its returned value is the message ID that could be used for
later communication. If another application wants to use this message, it must first
complete the message registration by calling the above function.

Using registered messages is almost the same with using standard messages. We can
call either CWnd::SendMessage(...) or CWnd::PostMessage(...) to send out the
message. When doing this, we can specify both WPARAM and LPARAM parameters.
Finally, we can map the registered messages to member functions using message
mapping macros.

To map registered messages to member functions, we need to use macro
ON_REGISTERED_MESSAGE. This macro has two parameters, the first should be the
value returned from function ::RegisterWindowMessage(...), which need to be stored
in a global (or static) variable. The second parameter should be the name of the
member function that will process the message.

Sample

Sample 13.8\Sender and 13.8\MsgRcv demonstrate how to send user-defined
messages between two applications. Here, "Sender" is a dialog box based
application, and "MsgRcv" is a list view based application. Both of them register two
messages: MSG_SENDSTRING and MSG_RECEIVED. The two macros are defined in
"Common.h" header file, which is included by both projects. The user can freely input
any number in one of the edit box contained in "Sender", and press "Send" button to
send the message to "MsgRcv". Before sending the message, "Sender" will search for
"MsgRcv", if the application exists, it will send MSG_SENDSTRING message to it, with
the number input by the user as the message parameter. Upon receiving the
message, "MsgRcv" will add the number to its list, then send back an MSG_RECEIVED
message. Upon receiving this message, "Sender" increments a counter indicating
how many messages are sent successfully, and its value will be displayed in the
dialog box.

Finding Window & Sending Message

To find application "MsgRcv", function CWnd::FindWindow(...) needs to be called.
We can base our search on two things: window class name and window name.
Because the window name may actually change during its lifetime, it is better to
base our searching on class name. As we know from section 13.1, in order to
designate a special class name to a certain window, we need to register the
window class name by ourselves and use it for creating the window. In sample
13.8\MsgRcv, the window class name is registered in function
CMsgRcvApp::InitInstance() and unregistered in function
CMsgRcvApp::ExitInstance(). When stuffing structure WNDCLASS, we use

IDR_MAINFRAME to set the window's default icon and menu resources, so there will
be no difference between our application and standard ones. The customized class
name (macro CLASS_NAME_RECIEVER) is defined in header file "13.8\Common.h"
and is shared by both applications. In function CMainFrame::PreCreateWindow(...)
of application "MsgRcv", the mainframe window class name is changed before the
window is created:

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT &cs)

{

cs.lpszClass=CLASS_NAME_RECIEVER;

return CFrameWnd::PreCreateWindow(cs);

}

Two global variables are declared to store the registered message IDs in file
"MainFrm.cpp" for both applications:

UINT g_uMsgSendStr=0;

UINT g_uMsgReceived=0;

For both applications, in function CMainFrame::OnCreate(...), the messages are
registered as follows:

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

g_uMsgSendStr=::RegisterWindowMessage(MSG_SENDSTRING);

g_uMsgReceived=::RegisterWindowMessage(MSG_RECEIVED);

......

}

For application "MsgRcv", message MSG_SENDSTRING is mapped to function
CMainFrm::OnSendStr(...) as follows:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

......

ON_REGISTERED_MESSAGE(g_uMsgSendStr, OnSendStr)

END_MESSAGE_MAP()

We use WPARAM and LPARAM parameters to pass the window handle of "Sender"
and the number input by the user to "MsgRcv". By sending the handle with message
MSG_SENDSTRING, the message receiver can use it to make reply immediately, there
is no need to find the window again.

Function CMainFrame::OnSendStr(...) is listed as follows, it demonstrates how
message MSG_SENDSTRING is handled in "MsgRcv". Like a normal WM_MESSAGE
type message handler, this function has two parameters that are used to pass
WPARAM and LPARAM. In the sample, WPARAM parameter is used to pass the
window handle of "Sender", from which we can obtain a CWnd type pointer and
use it to send MSG_RECEIVED message back. After that the value obtained from
LPARAM parameter is added to the list view. The following is this function:

(Code omitted)

On the "Sender" side, if the user presses "Send" button, we call function
CWnd::FindWindow(...) to find the mainframe window of "MsgRcv". If it exists,
message MSG_SENDSTRING will be sent to it, with the WPARAM parameter set to the
window handle of the dialog box and LPARAM parameter set to the number
contained in the edit box:

(Code omitted)

Message MSG_RECEIVED is mapped to function CSenderDlg::OnReceive(...). Upon
receiving message MSG_RECEIVED, we simply increment the counter and display
the new value in the dialog box:

(Code omitted)

It is fun to play with the two applications, because they implement the simplest
communication protocol: sending the message, replying with the acknowledgment.
By using message communication, we can send only simple information (like
integers) to another application. If we want to send complex data structure to other
processes, we need to use other memory sharing techniques such as file mapping
along with message sending.

13.9 Z-Order

Z-order represents the third dimension of a window besides its x and y position. Under

Windows(, a window can be placed before or after another window, and none of
the two windows can have a same Z-order (This means if the two windows share a
common area, one of them must be overlapped by the other).

Under Windows(, the Z-order of a top-most application window (the window that
does not have parent window) is managed by the OS. When the user clicks the
mouse on an application, this window will be brought to the top of the Z-order by
default. If this happens, also, the orders of all other windows will be changed
accordingly.

A window's Z-order can also be changed from within the application. The function
that can be used to implement this is CWnd::SetWindowPos(...). Besides Z-order, this
function can also be used to change the x-y position and the dimension of a
window. It is more powerful than function CWnd::MoveWindow(...), which could be
used to move a window only in the x-y plane.

Function CWnd::SetWindowPos(...) has six parameters:

BOOL CWnd::SetWindowPos

(

const CWnd *pWndInsertAfter, int x, int y, int cx, int cy, UINT nFlags

);

The middle four parameters (x, y, cx and cy) can be used to change a window's x-y
position and size. If we want to change only the Z-order of a window, we can set
these variables to 0s and set nFlags to SWP_NOMOVE | SWP_NOSIZE.

The first parameter is a CWnd type pointer, it indicates where the window should be
placed. This gives us the power to place a window before or after any existing
window in the system. More over, we can specify other four parameters:
CWnd::wndBottom, CWnd::wndTop, CWnd::wndTopMost, CWnd:: wndNoTopMost.
Among these parameters the most interesting parameter is CWnd::wndTopMost, if
we use this parameter, the window will always stay on top of other windows under
any condition.

Sample 13.9\ZOrder demonstrates how to change a window's Z-order. It is a dialog
based application generated by the Application Wizard. The only controls
contained in the dialog template are four radio buttons. If the user click on one of
them, function CWnd::SetWindowPos(...) will be called using the corresponding
parameter:

(Code omitted)

By checking "wndTopMost" radio button, the dialog box will always stay on top of
other windows.

13.10 Hook

Hook is a very powerful method in Windows(programming. Remember when
creating the snapshot application in Chapter 12, when the application was made
hidden to let the user make preparation, a timer was started. The capture would be
made just after the timer times out. This is a little inconvenient, because the time that
allows the user to make preparation is fixed. The ideal implementation would be like
this: instead of setting a timer, we can predefine a key stroke; the user can feel free
to make any preparation as the application is hidden; the capture will be made only
after the user presses the predefined key.

However, it seems almost impossible to implement this using normal Windows(
programming technique. As the application loses its focus, it will not receive any
keyboard related messages, this means we cannot direct the keystrokes to it.

The solution to this problem is using hook, which is a mechanism to intercept the
Windows(messages and process them before they reach the destinations. There are
many type of system information that can be intercepted, such as keystroke, mouse
move, system messages, and so on.

Hook Installation

Hooks can be installed either system wide or specific to a single thread. In the former
case, we can monitor the activities in the whole system. To install a hook, we need to
provide a hook procedure, which will be used to handle the intercepted message.
For different kind of hooks, we need to provide different procedures. For example,
the mouse hook procedure and the keyboard hook procedure look like the
following:

LRESULT CALLBACK KeyboardProc(int code, WPARAM wParam, LPARAM lParam);

LRESULT CALLBACK MouseProc(int nCode, WPARAM wParam, LPARAM lParam);

Although they look the same, the meanings of their parameters are different. For
keyboard hook procedure, WPARAM parameter represents virtual-key code, and
lParam parameter represents keystroke information. For mouse hook procedure,
WPARAM parameter represents message ID, and LPARAM represents mouse
coordinates. Different types of hooks have different hook procedures, they should
be provided by the programmer when one or more types of hooks are
implemented.

To install a hook, we need to call function ::SetWindowsHookEx(...):

HHOOK ::SetWindowsHookEx(int idHook, HOOKPROC lpfn, HINSTANCE hMod,
DWORD dwThreadId);

The first parameter indicates the type of hook, for a keyboard hook, it should be
WH_KEYBOARD, for a mouse hook, it should be WH_MOUSE. The second parameter is
the address of the hook procedure described above. The third and fourth
parameters should be set differently for system wide hook and thread specific hook.

System Wide Hook

The complex aspect of hook is that if we want to install a system wide hook, the hook
procedure must reside in a DLL (Except for journal record hook and journal playback
hook, which will be introduced in the next section). In this case, parameter hMod
must be the instance of the DLL, and dwThreadId should be 0. If we want to install a
thread specific hook and the hook procedure resides within the application rather
than a separate DLL, parameter hMode must be NULL.

Variables in DLL

Obviously in our case, we want the hook to be system wide, so we have to build a
separate DLL. This causes us some inconvenience. When the hook procedure
receives the hot-key stroke, it needs to activate the application. But since the DLL
and the application are separate from one another, it is difficult to access the
application process from the DLL.

Suppose we want to implement the hot-key based screen capturing, as we execute
Capture | Go! command (see Chapter 12), we can hide the application by calling
function CWnd::ShowWindow(...) using SW_HIDE flag. From now on the application
has no way to receive keystrokes, we have to process them in the keyboard hook
procedure residing in the DLL. As we get the predefined key stoke, we need to make
the capture and call function CWnd::ShowWindow(...) using flag SW_SHOW to
activate the application.

We can implement this by sending message from DLL to the application. If the DLL
knows the window handle of the application's mainframe window, this can be easily
implemented. To pass the window handle to the DLL, we can call a function
exported from the DLL when the hook is installed, and ask the DLL to keep this
handle for later use.

However, data stored in the DLL is slightly different from data stored in a common
process. For a normal process, it has its own memory space, the static variables
stored in this space will not change throughout their lifetime. However, for a DLL,
since it can be shared by several processes, its variables are mapped to the

application's memory space separately. By doing this, for a variable contained in
the DLL, different applications may have different values. This will eliminate data
conflicting among different processes.

This causes the following situation: if several processes share the same variable
contained in the DLL, on the DLL side, the value of this variable may change as the
window focus shifts from one process to another.

This will get us into trouble: since the variables relative to one process will only be
mapped to it while the process is active, as we hide our application, the handle
stored in the DLL previously will not represent the correct value anymore.

Defining Data Segment

To solve this problem, DLL has another feature that enables all the processes using
one DLL to share common data among them. In order to do this, we need to specify
a special data segment for storing such type of variables. We could use macro
#pragma data_seg to specify the data segment, and use -SEGMENT switch to link
the project.

DLL Implementation

Sample 13.10\Hook demonstrates keyboard hook implementation. The hook
procedure stays in a separate DLL file: "HookLib.Dll". Creating a DLL is slightly different
from creating MFC based applications, there is no skeleton generated at the
beginning. After using the application wizard to generate a Win32 based DLL
project, we are not provided with a single line of source code.

Since our DLL is relatively small, we can use just one ".c" and ".h" file to implement it.
We can create these two files by opening new text files, then executing command
Project | Add To Project | Files... to add them into the project.

In the sample, the DLL is implemented by "HookLib.h" and "HookLib.c" files.

File "HookLib.h" declares all the functions that will be included in the DLL:

(Code omitted)

Function LibMain(...) and WEP(...) are the entry point and the exit point of the DLL
respectively. The reason for using so many #if macros here is that it enables us to use
the same header file for both the DLL and the application that links the DLL. As we
build the DLL, we want to export functions so that they can be called outside the
DLL; in the application, we need to import these functions from the DLL. Macro
__declspec(dllimport) declares an import function and __declspec(dllexport)
declares an export function. As we can see, if macro __DLLIMPORT__ is defined,

function LibMain(...), WEP(...) and KeyboardProc(...) will be declared (they will be
used only in the DLL). In this case, two other functions SetKeyboardHook(...) and
UnsetKeyboardHook() will be declared as import function. If the macro is not
defined, the two functions will be declared as export functions.

The reason for using macro EXTERN_C is that the DLL is built with C convention and
our application is built with C++ convention. To make them compatible, we must
explicitly specify how to build the functions in the DLL. In the sample, two functions
are exported from the DLL: SetKeyboardHook(...) will be used by the application to
install hook; UnsetKeyboardHook() will be used to remove the hook.

In file "HookLib.c", first two static variables are declared:

(Code omitted)

We use #pragma data_seg("SHARDATA") to specify that g_hWnd and g_hHook will
be stored in "SHARDATA" segment instead of being mapped to calling processes.

Function SetKeyboardHook(...) installs system wide keyboard hook by calling
function SetWindowsHookEx(...). When using this function, we must provide the
instance handle of the DLL library and the handle of the application's mainframe
window:

(Code omitted)

The handle of application's mainframe window is stalled in variable g_hWnd for later
use. The handle of the hook is stored in variable g_hHook and will be used in function
UnsetKeyboardHook() to remove the keyboard hook:

STDENTRY_(BOOL) UnsetKeyboardHook()

{

return UnhookWindowsHookEx(g_hHook);

}

Function KeyboardProc(...) is the hook procedure. When there is a keystroke, this
function will be called, and the keystroke information will be processed within this
function:

(Code omitted)

The first parameter, code, indicates the type of keystroke activities. We need to

respond only when there is a keystroke action, in which case parameter code is
HC_ACTION. If code is less than 0, we must pass the message to other hooks without
processing it (This is because there may be more than one hook installed in the
system). In order not to change the behavior of other applications, after processing
the keystroke message, we also need to call function ::CallNextHookEx(...) to let the
message reach its original destination.

If the keystroke is CTRL+F3, we will check if the application window is visible. If not,
function ::ShowWindow(...) is called to activate it. In this case, the keyboard hook will
be removed.

We need to use -SECTION link option in order to implement "SHARDATA" data
segment. This can be done through executing Project | Settings... command (Or
pressing ALT+F7 hot key) then clicking "Link" tab on the popped up property sheet. In
the window labeled "Project Options", we need to add "-SECTION:SHARDATA,RWS" at
the end of link option. This will make the data in this segment to be readable,
writable, and be shared by several processes (Figure 13-7).

Sample 13.6\Hook

Sample 13.6\Hook is a standard SDI application generated by the Application
Wizard. In the sample, header file "HookLib.h" is included in the implementation file
"MainFrm.cpp", also, macro __DLLIMPORT__ is defined there. This will import two
functions contained in the DLL. The following portion of file "MainFrm.cpp" shows how
the header file is included and how the macro is defined:

#define __DLLIMPORT__

#include "stdafx.h"

#include "..\HookLib\HookLib.h"

#include "Hook.h"

To use the functions in DLL, we need to link file "HookLib.Lib" which is generated when
the DLL is being built. This can be done by executing command Project | Setting...,
clicking tab "Link" from the popped up property page, and entering the path of file
"HookLib.Lib" in edit box labeled "Object/Library Modules" (Figure 13-8).

The keyboard hook is installed in function CMainFrame::OnCreate(...). Also, within
the function, DLL is dynamically loaded by calling function ::LoadLibrary(...). The
returned value of this function is the DLL's instance (if the DLL is loaded successfully),
which will be used to install the keyboard hook. The following code fragment shows
how the DLL is loaded:

(Code omitted)

The DLL library is released before the application is about to exit in function
CMainFrame::OnClose():

(Code omitted)

A command Hide | Go! is added to the mainframe menu IDR_MAINFRAME, this
command installs keyboard hook and hides the application. We can press CTRL+F4
to show the application after it becomes hidden. The following is the implementation
of this command:

(Code omitted)

The application and the DLL should be in the same directory in order let the DLL be
loaded successfully. Or, the DLL may be stored under "Windows" or
"Windows\System" directory.

13.11 Journal Record and Journal Playback Hooks

Journal hooks are very interesting, they allow us to write program that can record
and playback events happened in the system (such as mouse move, clicking, key
stroking, etc.). With journal hooks, it is easy to implement advanced features such as
macro recording.

Events recording can be implemented by journal record hook, events playback can
be implemented by journal playback hook. Both of the hooks are system wide, and
the hook procedures can reside in either a DLL or EXE file. The installation of the two
hooks is the same with that of keyboard hook, except that we need to use
WH_JOURNALRECORD or WH_JOURNALPLAYBACK parameter when calling function
::SetWindowHookEx(...). Similarly, we need to provide a hook procedure for each
installed hook. Usually the names of journal hook procedures are
JournalPlaybackProc(...) and JournalRecordProc(...) respectively. Like procedure
KeyboardProc(...), both functions have three parameters, however, their meanings
are different here:

LRESULT CALLBACK JournalPlaybackProc(int code, WPARAM wParam, LPARAM
lParam);

LRESULT CALLBACK JournalRecordProc(int code, WPARAM wParam, LPARAM
lParam);

For journal record procedure, we need to record event only when parameter code
is HC_ACTION. At this time, the event message is stored in an EVENTMSG type object,
whose address can be obtained from parameter lParam. Structure EVENTMSG stores

hardware message sent to the system message queue, along with time stamp
indicating when the message was posted. We can use the information contained in
this structure to implement playback.

Analyzing Events

Another thing we need to pay attention to is that we need to provide a way of
letting the user stop recording and rendering playback at any time. By default,
Windows(allows journal hook to be stopped by any of the following key stroking:
CTRL+ESC, ALT+ESC and CTRL+ALT+DEL. Besides the default feature, it is desirable to
provide a build-in function for stopping the journal hook. We can predefine a key for
this purpose. The key pressing events can be trapped by analyzing EVENTMSG type
object, which has the following format:

(Code omitted)

Member message specifies event type, in order to trap keystroke, we need to
respond to WM_KEYDOWN activities. In this case, the virtual key code is stored in the
lower byte of member paramL.

Sample 13.11\Hook demonstrates journal record and playback hook
implementation. Like previous section, here hook functions are also implemented in
the DLL. For this sample, 13.11\Hook is based on 13.10\Hook, and 13.11\HookLib is
based on 13.10\HookLib.

For events other than specified key stroke, we need to allocate enough buffers for
storing an EVENTMSG type object and bind them together using linked list. To
implement this, we can define a new structure of our own:

typedef struct tagEVENTNODE

{

EVENTMSG Event;

struct tagEVENTNODE *lpNextEvent;

}EVENTNODE, *LPEVENTNODE;

Pointer lpNextEvent will point to the next EVENTMSG structure. This will form a singly
linked list.

The following code fragment shows how events are recorded in journal record hook
procedure. Like other types of hooks, we need to call CallNextHookEx() to pass the

event to other hooks if parameter code is less than 0:

(Code omitted)

In the above code fragment, we check if the event is CTRL+F3 key stroking. If so, we
remove the hook and send a message to the application's mainframe window
indicating that the recording is finished.

(Code omitted)

In the above code fragment, we try to allocate buffers for recording the event. If this
is not successful, we also need to finish the recording.

(Code omitted)

In the above code fragment, if lpeventTail is NULL, this is the first event we will record
after the journal record hook has been installed. We must record the current time so
that we can play back the recorded events at the rates they were generated.

(Code omitted)

The above code fragment shows how the event is recorded.

Playing back the Recorded Events

The playback is just the reverse procedure. Instead of allocating buffers and
recording events, we need to analyze the recorded singly linked list and playback
every event then free the buffers. When implementing the playback, parameter
code indicates what we need to do: if it is HC_SKIP, we need to get the next event
for playback; if it is HC_GETNEXT, we need to copy the event to an EVENTMSG type
object whose address can be obtained from parameter lParam. Here is how we get
the next event when parameter code is HC_SKIP:

(Code omitted)

Here, if there is no more event, we need to reset everything and send a message
(the message is a user defined message WM_FINISHJOURNAL, see below) to the
mainframe window of the application indicating that the playback is over. If there
are still events left, we get the next recorded event and free the buffers holding the
event that is being played back. If parameter code is HC_GETNEXT, we need to
obtain an EVENTMSG type pointer from parameter lParam, and copy the event
pointed by lpEventPlay to the object pointed by this pointer. When doing this copy,
we need to add an offset to the time stamp because originally it indicates the time
when the events were recorded:

(Code omitted)

Using Functions Contained in DLL

To notify the mainframe window about journal finishing event, a user registered
message is used to communicate between the application and DLL. In the DLL,
function ::RegisterMessage() is called after it is loaded, which will register
WM_FINISHJOURNAL message in DLL. This message is also registered in the
application's CMainFrame::OnCreate(...) function. In the sample, two menu
commands Macro | Record and Macro | Playback are added to the application.
To avoid journal playback, journal record and keyboard hook from getting
entangled, only one of the three hook related commands are enabled at any time.
Besides this, playback hook could not be installed if journal record hook has not
been installed. This is controlled by the following two variables declared in the
application: CMainFrame::m_bEnableMenu, CMainFrame::m_bPlayAvailable.

Installing and removing the hooks is simple. The following three functions show how
the journal record hook and journal playback hook are implemented in the
application. Here, CMainFrame::OnMacroRecord() implements command Macro |
Record, CMainFrame::OnMacroPlayback() implements command Macro |
Playback, and CMainFrame::OnFinishJournal(...) handles message
WM_FINISHJOURNAL:

(Code omitted)

To test the program, we can first execute Macro | Record command, then use
mouse or keyboard to generate a series of events. Next, we can press CTRL+F3 to
stop recording. Finally we can execute Macro | Playback command to see what
has been recorded.

13.12 Memory Sharing Among Processes

In sample applications created in section 13.8, we demonstrated how to share user
defined messages among different processes. However, with this method, we can
send only simple parameter (integer) with every message. Sometimes it is necessary
to share complex data among different processes, in which case we must apply
memory sharing method.

Problem with Global Memory

Is it possible to share buffers allocated by ::GlobalAlloc(...) function among different
processes? If so, we can embed memory handle in the message parameters and
send it to another process. Upon receiving the message, the corresponding process
can obtain the global memory handle and call ::GlobalLock(...) to access all the
memory buffers.

Unfortunately, although it is a possible method to share data among different
processes for Win16 applications, it is not possible for us to do so for Win32 based
applications. In a 32-bit operating system, virtual memory is used to map physical
memory to logical memory for each separate process, so each process has its own
memory space from 0 to infinity (ideally). Therefore, if the two processes have the
same logical address, they actually indicate different physical addresses. So if we
send memory address from one process to another, it will not indicate the original
buffer.

File Mapping

To solve this problem, in Win32 platform, there is a new technique that allows
different processes to share a same block of memory. This technique is called file
mapping, and can be used to let different processes share either a file or a block of
memory.

The file or memory used for this purpose is called File Mapping Object and must be
created using special function. After it is created successfully, each process can
open a view of the file or memory, which will be mapped to the address space of
the calling process.

File Mapping Functions

There are three functions that can be used to implement file or memory mapping:

(Code omitted)

File mapping object can be initiated by calling function ::CreateFileMapping(...). If
we want to share a file, we need to pass the file handle to the first parameter (hFile)
of this function. If we want to share a block of memory, we need to pass 0xFFFFFFFF
to this parameter. The fourth and fifth parameters specify the size of the object. For
file sharing, they can be set to zero, in which case the whole file will be shared. In the
case of memory sharing, they must be greater than zero. Parameter
lpFileMappingAttributes can be used to specify the security attributes of the object,
in most cases we can assign zero to it and use the default attributes. Parameter
flprotect specifies read and write permission. The most important parameter is the
last one, which must be the address of buffers that contain a name assigned to the
file mapping object. If any other process wants to access this object, it must also use
the same name to create a view of the file mapping object.

After the file mapping object is created successfully, the owner (the process that
created the object) can create a view of file to map the buffers to its own address
space by calling function ::MapViewOfFile(...). When doing this, we must pass the
handle returned by function ::CreateFileMapping(...) to parameter

hFileMappingObject. If we pass 0 to parameters dwFileOffsetHigh, dwFileOffsetLow
and dwNumberOfBytesToMap, the whole file or memory will be mapped. Finally,
parameter dwDesiredAccess allows us to specify desired access right. This function
will return a void type pointer, which could be cast to any type of pointer.

If any other process wants to access the file mapping object, it must call functions
::OpenFileMapping(...) and ::MapViewOfFile(...) to first access it then create a view
of file. When calling function ::OpenFileMapping(...), it must pass the object name
(specified by function ::CreateFileMapping(...) when the file mapping object was
created) to parameter lpName. The buffers can be mapped to the address space
of the process by calling function ::MapViewOffile(...), which is exactly the same with
creating view of file for the owner of the object.

Samples

Samples 13.12\Send and 13.12\MsgRcv demonstrate how to share a block of
memory between two applications. They are based on samples 13.8\Send and
13.8\MsgRcv respectively. First, the "Sender" application is modified so that its edit
box will allow multiple line text input (When inputting the text, CTRL+RETURN key
stroke can be used to start a new line), and the original variable
CSenderDlg::m_nSent is replaced by CSenderDlg::m_szText, which is a CString type
variable. The file mapping object is created in function CSenderDlg::OnInitDialog()
as follows:

(Code omitted)

Here, BUFFER_SIZE is a macro defined as an integer in header file "Common.h". Also,
MAPPING_PROJECT is a macro defined as a string. They will be used by both "Sender"
and "MsgRcv". In message handler CSenderDlg::OnButtonSend(), before the
message is sent out, we obtain the text from the edit box, create a view of file and
put the text into the buffers. Then message MSG_SENDSTRING is sent to "MsgRcv":

(Code omitted)

In project "MsgRcv", the client window is implemented using edit view instead of
original list view, this makes it easier for us to display text. After receiving the
message, we open the file mapping object, create a view of file, then retrieve text
from the buffers. Then we access the edit view, select all the text contained in the
view, and replace the selected text with the newly obtained text. Finally, the
acknowledge message is sent back:

(Code omitted)

There are other methods for sharing memory among different processes, such as
DDE and OLE. Comparing to the two methods, file mapping method is relatively

simple and easy to implement.

Summary

1) Before a window is created, we must stuff a WNDCLASS type object, register the
window class name, and use this name to create the window. Class WNDCLASS
contains useful information about the window such as mainframe menu, default
icon, default cursor shape, brush that will be used to erase the background, and the
window class name.

2) To implement one-instance application, we need to register our own window
class name, and override function CWnd::PreCreateWindow(...). Before the window
is created, we need to replace the default window class name with the new one. By
doing this, we can implement one-instance application by searching for registered
window class name: before registering the window class, we can check if there
already exists a window that has the same class name. If so, the application simply
exits.

3) We can call function CWnd::FindWindow(...) to find out a window with a specific
class name or window name in the system.

4) The document/view structure is implemented by class CSingleDocTemplate or
CMutiDocTemplate. If we want to create an application that does not use
document/view structure, we need to eliminate the procedure of creating
CSingleDocTemplate or CMutiDocTemplate type object and call function
CWnd::Create(...) to create the mainframe window by ourselves.

5) We can create several CMultiDocTemplate type objects in an application to let it
support multiple views or multiple documents.

6) Caption bar and window frame belong to non-client area. To paint non-client
area, we need to handle messages WM_NCPAINT and WM_NCACTIVATE.

7) To create a window with transparent background, we need to specify style
WS_EX_TRANSPARENT while creating the window.

8) An application can save its states in the system registry by calling function
CWinApp::SetRegistryKey(...). The information can be saved and loaded by calling
the following functions: CWinApp::WriteProfileInt(...), CWinApp::WriteProfileString(...),
CWinApp:: GetProfileInt(...)., CWinApp::GetProfileString(...).

9) To exchange user defined messages between two different processes, we must
use function ::RegisterWindowMessage(...) to register the messages.

10) Calling function CWnd::SetWindowPos(...) using parameter CWnd::wndTopMost

will make a window always stay on top of any other window.

11) Hook can be installed to let a process intercept and process Windows(messages
before they reach destinations. There are several types of hooks, which include
mouse hook, keyboard hook, journal record hook, journal playback hook, etc.

12) A hook can be installed by calling function ::SetWindowsHookEx(...) and
removed by calling function ::UnhookWindowsHookEx(...).

13) A DLL does not have its own memory space, instead, its variables are mapped to
the memory spaces of the calling processes. To declare static variables in the DLL,
we need to specify a data segment by using #pragma data_seg macro and -
SECTION link option.

14) To share a file or a block of memory among different processes, we need to
create file mapping object. Any process that wants to access the memory must
create a view of file, which will map the memory to its own address space.

BACK TO INDEX

Chapter 14 Views
We are going to introduce various types of views in this chapter. In MFC, there are
several types of standard views that are supported by MFC classes. These views
include edit view, rich edit view, list view, form view and tree view. The classes that
can be used to implement them are CEditView, CRichEditView, CListView,
CFormView and CTreeView respectively. They can be used to display plain text,
formatted text, tree, list, etc.

14.1 Edit View

Edit view is most suitable for implementing plain text editor. Remember in Chapter 9
when building one-line text editor, we had to write a lot of code in order to add
some basic editing functions. Actually, if we use edit view to implement text editor,
we can build a notepad-like application within just few minutes. With the edit view,
the serialization can be implemented by the member function of class CEditView, so
we don't even need to write code for handling data loading and storing. Also, this
class supports commands such as string search & replace, cut, copy and paste.

Generating the Application

A plain text editor can be generated through using Application Wizard. We can let
the editor support files with ".txt" extension as we go through the steps of generating
application skeleton (In order to do this, we need to click "Advanced" button in step
4, and input appropriate file extension into the edit box labeled with "File extension"),
or we can edit IDR_MAINFRAME string resource after the application is created. We
need to select CEditView as the base class of the view in the last step. By doing so,
after the application is first compiled, we will have a very simple notepad-like
application.

Sample 14.1\NotePad is generated this way. We even don't need to customize
function CDocument:: Serialize(...) in order to support file I/O. Lets take a look at the
default implementation of serialization:

void CNotePadDoc::Serialize(CArchive& ar)

{

((CEditView*)m_viewList.GetHead())->SerializeRaw(ar);

}

Everything is handled by function CEditView::SerializeRaw(...), which includes both
data reading and writing.

Also, there is no need for us to write message handlers for Edit | Undo, Edit | Cut, Edit
| Copy and Edit | Paste commands in order to enable them. If the mainframe menu
contains the following IDs for these commands (which is the default feature for any
project generated by Application Wizard), the application will automatically support
the above commands:

(Table omitted)

The reason for this is that CEditView already maps commands with the above-
mentioned IDs to its built-in member functions that handle undo, cut, copy and
paste commands. The name of these functions are not documented in the current
version of Visual C++, this means these function are not guaranteed to be supported
in the future.

If we want to use other command IDs instead of the recommended ones, we need
to implement command message mapping by ourselves. In order to do so, we need
to look at the MFC source code that contains member functions of class CEditView,
find out the function names that support these commands, and map the
WM_COMMAND type messages to the appropriate functions.

Search Related Commands

In the sample, three other standard commands, Search | Find..., Search |
Replace..., and Search | Find Next are implemented this way. The three commands
are used for searching a specific string in the text contained in the view, replacing
an old string with a new one, or repeating searching. The default IDs for these
commands are listed in the following table:

(Table omitted)

Message UPDATE_COMMAND_UI is also handled for the above commands.

In the sample, we use following non-standard command IDs to implement find,
replace, and repeat commands:

(Table omitted)

The message mapping is done in the implementation file "NPView.cpp":

(Code omitted)

With the above implementation, there is no need for us to declare and define new
member functions to handle the above commands, everything will be handled
automatically.

Other Commands

In the sample, some other commands that are not supported by class CEditVew are
also implemented. These command include Edit | Delete, which can be used to
delete the current selection; Edit | Select All, which can be used to select all the text
contained in the window, and Edit | Time/Date, which can be used to insert a
time/date stamp at the current caret position. For these commands, the message
mapping and message handlers need to be implemented by ourselves.

Edit view is implemented by an embedded edit control, which can be accessed by
calling function CEditView::GetEditCtrl(). Once this is done, we can call any member
function of CEdit and make change to the text contained in the window. For
example, if we want to replace the selected text with a new string or insert a string at
the current caret position, we can call function CEdit::ReplaceSel(...) to do so. If we
want to select all the text, we can call function CEdit::SetSel(...) and pass 0 and -1 to
its first two parameters. If we want to delete the selected text, we just need to call
function CEdit::Clear().

The following shows how command Edit | Time/Date is implemented in the sample:

(Code omitted)

First the current time is obtained by calling function CTime::GetCurrentTime(), which
is stored in a CTime type variable. Then it is formatted and output to a CString type
variable by calling function CTime:: Format(...). Finally, function CEdit::ReplaceSel(...)
is called to insert the time stamp.

By now, our sample is almost the same with standard "Notepad" application.
Obviously deriving class from standard MFC class saves us a lot of work. If we
implement the file I/O and formatted text display by ourselves, we need to write a lot
of source code.

14.2 Rich Edit View

Sample 14.2\Wordpad is an SDI application generated from Application Wizard, it

will be implemented as a "Wordpad" application.

The edit view has very limited feature: it can store only text less than 64Kbytes, and it
supports only one type of font. Furthermore, we can not edit graphics in the editor.

A more advanced editor can be implemented by using Rich edit view and Rich edit
document. Two classes that support this type of view and document are
CRichEditView and CRichEditDoc respectively. With the two classes, we can easily
build a Wordpad-like application, which supports rich text format (one of the formats
supported by Microsoft Word), OLE container and many default editing functions.

It seems that building a Wordpad-like application is very difficult, because it has too
many features. However, with CRichEditView and CRichEditDoc classes, this
procedure is almost equally simple with creating a "Notepad" application as we did
in the previous section. To build a Wordpad-like application, we can start from
Application Wizard to build a standard SDI application. To support ".rtf" file extension
in our application (which is the default extension for rich edit format files), in step 4,
we need to click "Advanced" button, input "rtf" in the edit box labeled with "File
extension". In the final step, we also need to select CRichEditView as the base class
for view implementation.

Generally, the base class for implementing application's document can not be
customized. It will be derived from CDocument by default. However, if class
CRichEditView is selected as base class for view implementation, the base class for
document implementation will automatically be changed to CRichEditDoc. Also,
some new commands will be added to the default mainframe menu
IDR_MAINFRAME under "Edit" sub-menu (These new commands will be added by
Application Wizard).

In order to include graphic objects (or other OLE server objects), we need to make
the application an OLE container. By doing this, we can embed all OLE servers in the
application. One example of such type of applications is "Paint". With this
implementation, the application can be used to edit not only text, but also graphic
objects. The OLE container selection can be set in the second step of Application
Wizard. If we forgot this, we will be prompted to do so when button "Finish" is clicked
in the final step.

By only working with Application Wizard, we are able to create a simple Wordpad. If
we compile the application at this point, we will have a standard editor that allows
us to insert various types of objects. The type of objects that can be embedded in
the application depends on which OLE servers have registered in the system. To
insert an object, we can execute command Edit | Insert New Object..., and select
an object from the popped dialog box. If we select "Bitmap Image" object, the
application will turn into a "Paint" application, with will let us edit bitmap in place.

Another feature of this editor is Edit | Paste Special... command. Because the editor
supports not only text, but also graphic editing now, the paste command should
support multiple-format data. If we execute command Edit | Paste Special..., a
dialog box will pop up indicating the available data formats contained in the
clipboard, from which we can make the selection. For example, if we paste a
bitmap, we have the choice to paste it either as bitmap format, metafile format or
DIB format.

The third feature of this editor is font selection. We may want to format different
portion of the text using a different font. This is the default feature of class
CRichEditView. The command ID that can be used to format the selected text using
a specific font is ID_FORMAT_FONT (class CRichEditView supports this ID). So all we
need to do is adding a Format | Font... command to menu IDR_MAINFRAME. With
this simple implementation, we are able to format the text with any font that is
available in the system.

Although it is very easy to build a fully functional application with a lot of enticing
features, it is relatively difficult to make modifications. For example, the standard
Wordpad application under Windows(has a ruler and a format bar, if we want to
add these features, we need to add them by ourselves.

Customizing File Open Dialog Box

Class CRichEditView and CRichEditDoc can handle not only rich text format, but also
plain text format (or ASCII format). By default, the two classes interpret input data
using rich text format, if the format is different, the file will not be loaded. To let the
application also support plain text format, we need to include multiple document
types in "File Open" and "Save As" file dialog boxes, this gives the user an option for
specifying file type. Although we can register more than one type of document to
implement this, in the case of rich edit view, it is not an efficient way. This is because
both formats are already supported by class CRichEditDoc.

To implement customized "File Open" dialog box, we can override function
CWinApp::OnFileOpen(...). We need to provide "File Open" dialog box, let the user
pick up a file name, and pass this name to function
CWinApp::OpenDocumentFile(...). Here we need to pay special attention to file
formats. Because we support more than one file format here, we need to implement
a "File Open" dialog box supporting multiple file filters, and inform document the file
format that was selected by the user. To customize a file open dialog box, we need
the knowledge of Chapter 6; to let the document support a different file format, we
can set a Boolean type member variable of class CRichEditDoc:
CRichEditDoc::m_bRTF, which is a public member variable. If this variable is set to
TRUE, the data in the file will be treated as formatted data stream; if it is set to FALSE,
the data will be treated as unformatted data stream (plain ASCII text). We need to
set this flag before function CWinApp::OpenDocumentFile(...) is called.

The following code fragment shows how function CWordPadApp::OnFileOpen() is
implemented in the sample:

(Code omitted)

We must map command ID_FILE_OPEN to this function in order to make it effective.
In the sample, WM_COMMAND message mapping for this command is customized
as follows:

Original mapping:

ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

New mapping:

ON_COMMAND(ID_FILE_OPEN, OnFileOpen)

Customizing "Save As" Dialog Box

Besides file open, we also need to think about file saving. This is more complex than
file open, because we need to allow the user to save the file being edited with a
different format. In case the user changes data format, we must also change the
original file extension (from "rtf" to "txt" or vice versa).

To customize file saving to support multiple file formats, we need to override function
CDocument:: DoSave(...). This is an undocumented member function of MFC.
Unfortunately, because file dialog box is implemented within this function, we have
no other choice to support multiple file format without modifying it. Although using
undocumented functions is not recommendable, sometimes we have to do so in
order to make our applications perfect.

Function CDocument::DoSave(...) has two parameters:

BOOL CDocument::DoSave(LPCTSTR lpszPathName, BOOL bReplace);

The first parameter is a pointer to the buffers containing the file name, the second is
a Boolean type variable indicating if the file name should be changed. Actually, this
parameter is always set to TRUE so we can neglect its value.

Pointer lpszPathName gives us the file name that should be used for saving data. But
this pointer can also be NULL. If the file being edited is created through File | New
command and the user has selected File | Save or File | Save As command,
lpszPathName will be NULL. The following table lists the values of lpszPathName and
bReplace under different situations:

(Table omitted)

Based on the above analysis, we can override function CDocument::DoSave(...) as
follows: obtaining the file name from lpszPathName, if it is NULL, we implement the
"Save As" dialog box with multiple file filters. After the user has selected a file name,
we need to add extension to it according to the filter selected by the user. Also, we
need to set data format for file saving. Then we can call function CDocument::
OnSaveDocument(...) and pass the file name to it to implement file saving.

In the derived function CWordPadDoc::DoSave(...), we need to implement the
customized "Save As" dialog box and also, add file extension, change file format if
necessary. The following is a portion of this function:

(Code omitted)

We can compare CWordPadDoc::DoSave(...) with the default MFC function
CDocument::DoSave(...).

Formatting Text

Another feature we want to let this editor have is text formatting. For example, we
may let the user format the selected text using bolded, italic or underlined style. Or
we may let the user change the alignment of the selected paragraph (make the
whole paragraph aligned left, centered or aligned right). The two types of formatting
are called Character Formatting and Paragraph Formatting respectively, they can
be implemented through calling functions CRichEditView::SetParaFormat(...) and
CRichEditView:: SetCharFormat(...). The following shows the formats of the two
functions:

void CRichEditView::SetParaFormat(PARAFORMAT &pf);

void CRichEditView::SetCharFormat(CHARFORMAT cf);

Because there are many properties we can set, we need to use structures
PARAFORMAT and CHARFORMAT to specify which properties will be customized. The
following is the format of structure PARAFORMAT:

typedef struct _paraformat {

UINT cbSize;

_WPAD _wPad1;

DWORD dwMask;

WORD wNumbering;

WORD wReserved;

LONG dxStartIndent;

LONG dxRightIndent;

LONG dxOffset;

WORD wAlignment;

SHORT cTabCount;

LONG rgxTabs[MAX_TAB_STOPS];

} PARAFORMAT;

We need to set the corresponding bits of member dwMask in order use other
members of this structure. For example, if we want to set paragraph alignment, we
need to assign member wAllignment an appropriate value, and set PFM_ALIGNMENT
bit of member dwMask. If this bit is not set, member wAlignment will have no effect
when function CRichEditView::SetParaFormat(...) is called.

There are a lot of features we can set through using this function, which include text
numbering (using bullets at the beginning of each line), paragraph start indent, right
indent, second line offset, paragraph alignment and tabs.

The usage of function CRichEditView::SetCharFormat(...) is similar. Here we have
another structure CHARFORMAT that could be used to set appropriate properties for
the selected text:

typedef struct _charformat {

UINT cbSize;

_WPAD _wPad1;

DWORD dwMask;

DWORD dwEffects;

LONG yHeight;

LONG yOffset;

COLORREF crTextColor;

BYTE bCharSet;

BYTE bPitchAndFamily;

CHAR szFaceName[LF_FACESIZE];

_WPAD _wPad2;

} CHARFORMAT;

Again, member dwMask should be used to specify which properties will be
customized. We can make change to character effects (make it bolded, italic,
strikeout, underlined, or change its color), modify the size of characters, customize
character's offset from the base line (this is useful for implementing superscript or
subsript), or select a different type of font.

Counterpart functions of CRichEditView::SetParaFormat(...) and CRichEditView::
SetCharFormat(...) are CRichEditView::GetParaFormat(...) and CRichEditView::
GetCharFormat(...) respectively. They allow us to retrieve the properties of the
current paragraph or the selected text (If no text is selected, the properties indicate
the text at the current caret position). Similarly, we need to specify corresponding
bits of member dwMask in order to retrieve certain properties: those members who
have corresponding zero bits in member dwMask will not be stuffed with the
paragraph or character information.

It seems that by using the above four functions, we can build a very useful editor that
supports rich edit text format. However, in class CRichEditView, there exist more
powerful functions that can be used to format the selected text or paragraph. These
functions are also undocumented, but using them can save us much effort:

Functions used for paragraph formatting:

CRichEditView::OnParaCenter();

CRichEditView::OnParaRight();

CRichEditView::OnParaLeft();

Functions used for character formatting:

CRichEditView::OnCharBold();

CRichEditView::OnCharUnderline();

CRichEditView::OnCharItalic();

Functions used to handle UPDATE_COMMAND_UI messages:

CRichEditView::OnUpdateCharBold();

CRichEditView::OnUpdateCharUnderline();

CRichEditView::OnUpdateCharItalic();

CRichEditView::OnUpdateParaCenter();

CRichEditView::OnUpdateParaLeft();

CRichEditView::OnUpdateParaRight();

Instead of implementing our own message handlers, we can just add commands to
the mainframe menu or tool bar, then map the commands to these functions. In the
sample, we add six buttons for character and paragraphing formatting (Figure 14-1),
and map the command messages to the above functions as follows:

(Code omitted)

With the above implementation, the editor can let the user set the character and
paragraph properties.

14.3 Simple Explorer, Step 1: Preparation

Starting from this section we are going to create an Explorer-like application using
classes CTreeView and CListView. The application is based on an SDI application
whose client window is implemented by a 2-pane splitter window. We will use
CTreeView to create the left pane, and use CListView to create the right pane. One
the left pane, the file system (directories) will be displayed in a tree form, the user
can click on any node to select a directory, or double click on it to expand the node
(show all the sub-directories). On the right pane, all files and sub-directories
contained in the currently selected directory will be listed, they can be displayed in
one of the four styles supported by list view.

We have introduced how to create splitter window in Chapter 3. Obviously here we
need to create static splitter windows. Application Wizard does have a choice to let

us create splitter window, however, it can only help us with creating dynamic splitter
window. We can modify the dynamic splitter window to static splitter window after
the application is generated. To let the Application Wizard generate code for
implementing dynamic splitter window, we can click "Advanced..." button (in step 4)
and check "Use split widow" check box in the popped up dialog box.

In order to create a splitter window with two panes implemented by different types
of views, first we must implement two view classes. Here, one of the views can be
implemented as we go through the Application Wizard's project creation steps: in
the final step, we can select CListView as the view's base class. The other class can
be added after the project is generated by Class Wizard.

Sample 14.3\Explorer is created this way. It is a standard SDI application, with first
view generated by Application Wizard whose name is CExplorerView. The second
view is added by Class Wizard, whose base class is CTreeView and the class name is
CDirView. In function CMainFrame::OnCreateClient(...), the splitter window is
created using the above two classes:

(Code omitted)

Functions CSplitterWnd::CreateStatic(...) and CSplitterWnd::CreateView(...) are
called to create the splitter window and each individual pane. Please note that we
must include "afxcview.h" in the header files of both class CExplorerView and
CDirView, otherwise the compilation will generate errors.

The only result of this sample is a two-way splitted window. We will add further
features in the next several sections.

14.4 Simple Explorer, Step 2: List Drives

Sample 14.4\Explorer is based on sample 14.3\Explorer.

We will display four types of items in the tree view window (left pane of splitter
window): desktop, computer, drives, directories. The root node is desktop node, and
there will be only one such type of node. Under the desktop node, there will be a
computer node, which lists the computer name. Under the computer node, all the
available drives will be listed, under each drive node, directories will be listed. With
this structure, the file system of the whole computer can be displayed.

Creating Image List

Each node can have a label and also an associated image. Although they both are
optional features, implementing them can make our application look more
professional. To use images, we must create an image list and select it into the tree
control. The image list can be created from either DIB images or icons. As we know

from Chapter 5, the simplest way to create image list is to prepare images as the
resources then load them at run time. In the sample, five images are prepared for
the tree control, whose usage is listed in the following table:

(Table omitted)

Like all other types of views, the best place to initialize the tree is in function
CDirView:: OnInitialUpdate(). In order to do so, we need to create the image list,
select the image list into the tree control, and create the tree. Image list creation
can be implemented by calling functions CImageList:: Create(...) and
CImageList::Add(...). We can use the first function to create the image list, specify
the image size and number of images that will be included in the list. Then we can
call the second function to add each single image. In the sample, this procedure is
implemented as follows:

(Code omitted)

Alternative Ways of Creating Image List

The image list is created using bitmap images. It can also be created from icons.
Also, we can use one single image to create an image list that contains several
images. In order to do so, we need to combine all the images together to form one
image (align them horizontally, just as the image used for creating tool bar), and call
one of the following versions of function CImageList::Create(...):

BOOL CImageList::Create(UINT nBitmapID, int cx, int nGrow, COLORREF crMask);

BOOL CImageList::Create(LPCTSTR lpszBitmapID, int cx, int nGrow, COLORREF
crMask);

The image list can also be created from two existing image lists by calling the
following version of this function:

(Code omitted)

We set the background color to white so that all image's portion with white color will
be treated as transparent region.

Setting Styles of Tree Control

We can set the styles of the tree control by calling function ::SetWindowLong(...). This
function is not the member function of class CTreeView, and can be called to
change the styles of any window. In order to know which styles can be customized,
we can look at the documentation of function CTreeCtrl:: Create(...). Generally, any
style that can be set to parameter dwStyle of this function can also be used by

function ::SetWindowLong(...) to change the style of a tree control. The following
code fragment shows how the default styles of the tree control are customized in the
sample (within function CDirView:: OnInitialUpdate()):

(Code omitted)

Style TVS_HASLINES will let the nodes be connected by dotted lines,
TVS_LINESATROOT will add a line at the root node, and TVS_HASBUTTONS will add a
rectangle button (displays either "+" or "-") for each expandable node. If we do not
specify these styles, the tree control will look slightly different.

These styles can also be customized in function CView::PreCreateWindw(...). In order
to do so, we need to set the corresponding style flags for member dwExStyle of
structure CREATESTRUCT. The difference between two methods is that using
::SetWindowLong(...) can let us change the styles of a window dynamically.

Adding Root Node

The next step is to add nodes to the tree. We need to call function
CTreeCtrl::InsertItem(...) to add a node to the tree. To call this function, we need to
prepare a TV_INSERTSTRUCT type object, and specify the properties of node. For
example, we can specify the node's parent, associated image, label and states. This
procedure has been discussed in chapter 5. One thing we need to pay attention to
is that since InsertItem(...) is not a member function of CTreeView, we must first call
function CTreeView::GetTreeCtrl() to obtain the tree control before adding any
node. The following portion of function CDirView::OnInitialUpdate() shows how the
root node is added:

(Code omitted)

Finding out Available Drives in the System

By stuffing TV_INSERTSTRUCT type object and calling function CTreeCtrl::InsertItem(...)
repeatedly, the tree can be created. However, before proceeding to create other
nodes, we need to find out all the available drives in the system.

Currently there can be at most 26 drives contained in one system, which are labeled
from "A:" to "Z:". We can call runtime function _chdrive(...) to change the current
working drive (Calling this function has the same effect with typing command "a:" in
a DOS prompt window). Function _chdrive(...) has one parameter:

int _chdrive(int drive);

Parameter drive specifies target drive. It can be any number from 1 to 26, which
represents drive A:, B:, C:... and so on. The function will return 0 if the working drive is

changed successfully, otherwise it returns -1.

So we can call this function repeatedly by passing 1, 2, 3...26 to it and examining the
returned value. If the function returns 0, this means the drive is available, and we
need to add it to the tree control. If the function returns -1, we can just go on to
check the next drive.

Because we do not want to change the default working drive, we need to save the
current working drive before calling function _chdrive(...), and resume it after the
checking is over. The current working drive can be retrieved by calling runtime
function _getdrive(). The following portion of function CDirView:: OnInitialUpdate()
shows how the drives are added to the tree view window:

(Code omitted)

When program exits, we must do some cleanup job, which includes removing all the
nodes and destroying the image list. In the sample, this is implemented in
WM_DESTROY message handler:

(Code omitted)

14.5 Simple Explorer, Step 3: Listing Directories

Sample 14.5\Explorer is based on sample 14.4\Explorer.

In the previous section, we called function _chdrive(...) to find out all the available
drives in the system. In order to add the directories (sub-directories) to the tree view
window, we need to enumerate directories and files.

Enumerating Files and Directories

In MFC, class CFileFind can be used to enumerate files and directories under certain
path. If we call this function for all the directories and sub-directories contained in
the system, finally we will get all the information about the file system.

To enumerate files and directories contained in the current working directory, we
can start from calling function CFileFind::FindFile(). Then we can call function
CFileFind::FindNextFile() repeatedly until it returns a FALSE value. The following code
fragment shows how to enumerate all the files and directories contained in the
current working directory:

(Code omitted)

Note we can also use wildcard characters when calling function

CFileFind::FindFile(...) to match file name with specific patterns. If we do not pass any
parameter to it, it will be equal to passing "*.*" to the function. In this case all the files
and directories will be enumerated. If function CFileFind:: FindNextFile() returns a non-
zero value, we can call several other member functions of class CFileFind to obtain
the properties of the enumerated file such as file name, file path, file attributes,
created time and updated time.

Adding Directory Nodes

In order to add directory node to the tree view window, we need to implement a
loop and enumerate directories for each available drive, then add the enumerated
directories to the tree.

Besides directories, we also need to enumerate sub-directories for the expanded
nodes. This is because our tree control supports buttons (we have set
TVS_HASBUTTONS style), which indicates whether an item has child items or not. For a
node that contains child items, its button will contain a "+" sign when the node is in
collapsed state, indicating that the node is expandable. For a node that does not
contain child items, there will be no such type of buttons.

So the directory enumeration can be added to the loop of enumerating all drives:
after an existing drive is found, we can change the current working directory to the
root directory of this drive, then enumerate all the first-level directories and all the sub-
directories of each first-level directory.

Function CDirView::AddDirs(...) is implemented in the sample, it will be used to add
directory items to a specified node. It has two parameters, the first is the handle of
the target tree item, and the second is a Boolean type variable indicating if we
should further add sub-directories for each added directory node. The following is
the format of this function:

void CDirView::AddDirs(HTREEITEM hTreeItem, BOOL bFindChild);

Before calling this function, we need to change the current working directory to the
directory we want to examine. So in function CDirView::OnInitialUpdate(...), after one
drive node is added to the tree view window, we change the current working
directory to root directory of that drive, and call function CDirView::AddDirs(...) to
add nodes for the directories. The following is the modified portion of function
CDirView::OnInitialUpdate(...):

(Code omitted)

For the root directory, we need to find out not only the directories under it, but also
the sub-directories of each first-level directory. So we pass a TRUE value to the
second parameter of function CDirView:: AddDir(...). The function will recursively

enumerate sub-directories for all the directories found within the function if the
parameter is TRUE.

At the beginning of function CDirView::AddDirs(...), we initialize a TV_INSERTSTRUCT
type object and call function CFileFind::FindFile(). If it returns TRUE, we can further call
function CFileFind:: FindNextFile() and get all the attributes of the enumerated file
(directory). Then we repeat file (directory) enumerating until function
CFileFind::FindNextFile() returns a FALSE value:

(Code omitted)

We can examine if the enumerated object is a directory or a file by calling function
CFileFind:: IsDirectory(). This is necessary because only the directories will be added
to the tree view window. A directory node is added by first stuffing TV_INSERTSTRUCT
type object then calling function CTreeCtrl:: InsertItem(...):

(Code omitted)

If parameter bFindChild is TRUE, we need to enumerate sub-directories for each
added directory node. However, since "." and ".." are also two types of directories
(indicating the current and parent directories respectively), if we apply this operation
on them, it will cause infinite loop. To examine if a directory is one the above two
types of directories, we can call function CFileFind::IsDots(). If the function returns
FALSE, we can call function CDirView::AddDirs(...) again to add sub-directory nodes.
Before calling this function, we also need to change the current working directory.
After the function is called, we need to resume the original working directory:

(Code omitted)

If we execute the sample, we need to wait for a while before the procedure of
building directory tree is completed. This waiting time is especially long for a system
containing many drives and directories. This is why we only add fist and second level
directories to the tree view window at the beginning. If we build the whole directory
map before bringing up the window, the user will experience a very long waiting
time. We will add new nodes to the tree only when a node is expanded and its sub-
level contents need to be revealed.

14.6 Simple Explorer, Step 4: Displaying Files

In the sample, all files will be listed in the list view that is located at the right pane of
the client splitter window. Like what is implemented in class CDirView, we need to
enumerate files under a directory and add corresponding nodes to the list control in
order to display the files.

The list view window will display all the directories and files contained in the selected

directory. If the currently selected directory changes, we must destroy the list view
and create a new one. For this purpose, in the sample, a new function
CExplorerView::ChangeDir() is implemented, which can be used to create the list
view from the currently selected directory.

Image Lists

Before adding any file to the list view, we need to prepare image lists. This procedure
is almost the same with that of tree view. The only difference between the two is that
for list view we have more choices. This is because the items contained in a list view
can be displayed in different styles, and for each style we can use a different type of
images.

A list view can display items in one of the four styles: big icon (default style), small
icon, list, report. We can prepare two image lists, one for big icon style, one for other
three styles.

We can display different file types using different icons, this is how the files are
displayed in real "Explorer" application. Under Windows(, each type of files can
register both big and small icons in the system, and "Explorer" will use the registered
icons for file displaying. To get the registered icons, we need to call some special
functions. We will implement this method in later sections. Here, we will prepare our
own icons for displaying files. In the sample, two sets of image resources are included
in the applications, one of them will be used for displaying directories and the other
for displaying files. Their IDs are IDB_BITMAP_CLOSEFOLDERBIG,
IDB_BITMAP_CLOSEFOLDER, IDB_BITMAP_FILEBIG and IDB_BITMAP_FILE.

In the sample, big icon image list is created from IDB_BITMAP_CLOSEFOLDERBIG and
IDB_BITMAP_FILEBIG. Small icon image list is created from IDB_BITMAP_CLOSEFOLDER
and IDB_BITMAP_FILE. The creation of image list is the same with what we did for the
tree view. When an image list is selected into the list control, we must specify the
type of image list. The following portion of function CExplorerView::ChangeDir()
shows how the image lists are selected into the list control in the sample:

(Code omitted)

Here pointer pilSmall and pilNormal point to two different image lists. We use
LVSIL_SMALL and LVSIL_NORMAL to specify the type of the image list.

Adding Columns

First we need to add columns to the list control. The columns will appear in the list
control window when the items contained in it are displayed in "Report" style. For
each item, usually the small icon associated with the item and item label will be
displayed at the left most column (column 0). For other columns, we can display text

to list other properties of the item.

The columns are added through stuffing LV_COLUMN type object and calling
function CListCtrl:: InsertColumn(...). Like other structures such as TV_INSERTSTRUCT,
LV_COLUMN also has a member mask that lets us specify which of the other
members of this structure will be used. For example, we can specify text alignment
format (is the text aligned left, right or is it centered?) by setting LVCF_FMT bit of
member mask and assigning appropriate value to member fmt; we can specify the
width of each column by setting LVCF_WIDTH bit and using cx member; we can set
the column caption by setting LVCF_TEXT bit and using pszText member. In the
sample, text of each column is aligned left, the width of each column is set to 150,
and the column texts are: "Name", "Size", "Type", and "Modified" respectively.

To make it convenient to add columns, the following global variables are declared
in the sample:

#define NUM_COLUMNS 4

(Code omitted)

In function CExplorerView::ChangeDir(), the columns are added as follows:

(Code omitted)

Listing Files

In the list view, each item represents a file under certain directory. When the items
are displayed in "big icon", "small icon" and "list" styles, each file is represented by an
icon contained in the list view window. When they are displayed in the "report" style,
the file is represented by both an icon and several text strings. In this case, column 0
contains icon and the file name, and the rest columns contain other information
about the file (These items are called the sub-items).

The procedure of adding items to list control is similar to adding directory nodes to
tree control, except that we don't need to worry about enumerating sub-directories
here. Also, for each item, we need to set not only the image number and item text
(contained in column 0), but also the sub-item text (contained in the rest of the
columns). For this purpose, we can store the text of sub-items in a string array. After
all the items are added, we can set sub-item text for each item.

The file enumerating can be implemented by calling functions CFileFind::FindFile()
and CFileFind::FindNextFile() repeatedly. After a file is found, we stuff an LV_ITEM type
object and call CListCtrl::InsertItem(...) to add a new item to the list control. Here is
how it is implemented in function CExplorerView::ChangeDir():

(Code omitted)

Unlike tree control, there is no handle here to identify a special item. All the items are
identified by their indices, this means if we display items in "list" or "report" style, the
item located at the first row is item 0, the next row is item 1... and so on. When
inserting an item, we need to specify the item index by using member iItem of
LV_ITEM structure.

We store file size (for directory, display nothing), file type ("File" or "Folder"), the
updated time in a string array that will be used to add text for the sub-items. These
attributes of file can be retrieved by calling functions CFileFind::GetLength(),
CFileFind::IsDirectory() and CFileFind:: GetLastWriteTime(...). When calling the third
function to obtain the update time of a file, we get a CTime type variable. To store
the time in a CString type variable in ASCII format, we need to call function
CTime::Format(...). The following portion of function CExplorerView::ChangeDir()
shows how the string array is created:

(Code omitted)

The text of sub-items is added by calling function CListCtrl::SetItemText(...). This can
also be implemented by stuffing LV_ITEM type object (specifying item and sub-item
indices) and calling function CListCtrl::SetItem(...). The following portion of function
CExplorerView::ChangeDir() shows how this is implemented in the sample:

(Code omitted)

Destroying the Old List

Whenever the current working directory is changed, we need to call function
CExplorerView:: ChangeDir() to create new file list. Before building a new one, we
need to delete the old list. In the sample, this is implemented by function
CExplorerView::DestroyList(). Within this function, both list items and image lists are
deleted:

(Code omitted)

Since we can retrieve the pointers of image list from the list control, there is no need
for us to store them as variables. This function is called in function
CExplorerView::ChangeDir() and WM_DESTROY message handler.

Using Function CExplorerView::ChangeDir()

At this point, we still do not allow the user to select a directory by clicking on a
directory node in the tree view window. So we can only display the files and
directories contained in the root directory when the application is first invoked. This is

implemented in function CExplorerView::OnInitialUpdate(), where we find the first
available drive, and call function CExplorerView::ChangeDir() to create the list view:

(Code omitted)

14.7 Simple Explorer, Step 5: Displaying Registered Icons

Windows(encourages all types of files to register specific icons to the system, so that
when they are displayed in certain applications such as "Explorer", the registered
icons (also called Shell Icon) can be used to distinguish between different type of
files. However, some file types do not have registered icons and some files contain
icons within themselves (such as files with ".exe" or ".dll" extension).

Which Icon to Use

Windows(always try to display a file using the appropriate icons. If a file contains
icon itself, this icon will be used. If a file doesn't contain any icon but has registered
icons (such as some special document files like "*.bmp", "*.doc"), the registered icons
will be used. If no registered icons are found, a default icon will be assigned to the
file.

There is a shell function that can be used to retrieve the icon information for a file:

WINSHELLAPI DWORD WINAPI SHGetFileInfo

(

LPCTSTR pszPath, DWORD dwFileAttributes, SHFILEINFO FAR *psfi,

UINT cbFileInfo, UINT uFlags

);

Here parameter pszPath is a pointer to a string specifying the file path;
dwFileAttributes specifies the file attributes, and the file information can be retrieved
into a SHFILEINFO type object which is pointed by pointer psfi; cbFileInfo specifies the
size of SHFILEINFO structure; uFlags specifies what information is being retrieved. In
our case, we can combine SHGFI_ICON with one of the following flags and pass the
result to parameter uFlags:

(Table omitted)

To display each file with embedded or registered icons, before adding an item to
the list control, we need to first customize the image list. If any icon is found by calling

function ::SHGetFileInfo(), we will add it to the image list. If we could not find an icon
using this method, the default icon will be associated with the corresponding file.

Sample

Sample 14.7\Explorer is based on sample 14.6\Explorer. In this sample, the
embedded and registered icons are retrieved for displaying files in the list view.

In the sample, a new member function is added for retrieving icons for a file:

HICON CExplorerView::GetIconFromFile(CString szFileName, UINT uFlags);

The returned value is an icon handle. Within this function, ::SHGetFileInfo(...) is called
to get the icon information of a file. The following is the implementation of this
function:

(Code omitted)

Function CExplorerView::ChangeDir() is modified as follows: after a file is found,
function CExplorerView::GetIconFromFile(...) is called to find its embedded or
registered icons; if this is successful, the newly obtained icons will be added to the
image list and associated with the file; otherwise the default images will be used. The
following portion of function CExplorerView::ChangeDir() shows how we try to find
the embedded icons of a file:

(Code omitted)

In rare cases, some files may have small embedded or registered icon but no
corresponding big icon, or vice versa. In any case, the embedded or registered icon
has the highre priority to be used. The newly obtained icon is added to the image list
by calling function CImageList::Add(...).

14.8 Simple Explorer, Step 6: Clicking and Double Clicking

Sample 14.8\Exoplorer is based on sample 14.7\Explorer. In this sample, when the
user clicks or double clicks the left button on a directory node contained in the tree
control, the current working directory will be changed and the contents of the list
view will also be updated.

If the double clicking expands a node, we need to pay attention to the newly
revealed nodes: if any directory contains sub-directories, we need to add new
nodes so that the node button will be automatically enabled.

Tree Control Messages

Mouse clicking events are sent through WM_NOTIFY messages. For tree control,
various activities of tree items can be handled by processing this message. In MFC,
this message can be mapped to a member function by using macro
ON_NOTIFY_REFLECT. This macro has two parameters, the first specifies the event
type, the second specifies the member function name. There are many types of
events, for example, mouse button clicking event is defined as NM_CLICK, and the
node expanding event is defined as TVN_ITEMEXPANDING. Fortunately, in MFC,
message mapping for these events can be easily implemented through using Class
Wizard. In sample 14.8\Explorer, we trap mouse clicking and node expanding events
to functions CDirView:: OnClick(...) and CDirView::OnItemExpanding(...) respectively.

Obtaining Full Path

When the user clicks mouse on a node, first we need to find out the path
represented by that node. Although the directory name is stored as the item text for
each node, it is not a full path. We need a full path in order to change the current
working directory. In the sample, function CDirView::GetDir(...) is implemented to
obtain the full path represented by any item. Within this function, we keep on
retrieving the item's parent node until root is reached, and combining the obtained
directory names to form a full path.

Finding out the Clicked Item

After receiving NM_CLICK notification, we can call function CTreeCtrl::HitTest(...) to
find out the handle of the item that was clicked. We need to pass the current mouse
position to this function. The returned value should be the handle of the item that is
currently under the mouse cursor. If the mouse is not over any item, the function will
return NULL. Please note that when calling this function, the coordinates of the
mouse cursor should be in the coordinate system of the client window. We need to
call function CWnd::ScreenToClient(...) to make the conversion.

When an Item Is Clicked

Special attention needs to be paid to directory nodes labeled with "." and "..". When
they are clicked, the current working directory should be changed differently. For
the purpose of demonstration, in the sample, no change will be made if the user
clicks any of the two types of directories. If the user clicks a normal directory node,
we need to change the current working directory to the selected one and notify the
list view to update its contents. This notification is made through calling function
CBrowserDoc::ChangePath(), within which function CBrowserView::ChangeDir() is
called. However, if the user clicks on the currently selected directory, no change will
be made. The following is the message handler for mouse left button clicking:

(Code omitted)

When a Node Expands

When a node is expanding, we need to check the newly revealed nodes to see if
they always contain child nodes. If not, we need to add child nodes (if they have
sub-directories) to them because this will enable node button automatically. In the
sample, function CDirView::AddChildrenChildren() is implemented to let us add new
nodes for all the child nodes of a given node. Within this function, we check each
child node to see if it already has child items (which means the sub-directories have
already been added for this node). If not, we call function CDirView::AddDirs(...) to
add new nodes to it. A node's child item can be enumerated by calling function
CTreeCtrl::GetChildItem(...) first then calling CTreeCtrl::GetNextSiblingItem(...)
repeatedly until it returns NULL value. Also, we can call function
CTreeCtrl::ItemHasChildren(...) to examine if a node already has child nodes. The
following is the implementation of function CDirView::AddChildrenChildren(...):

(Code omitted)

This function is called when a node is about to expand in function
CDirView::OnItemExpanding(...) as follows:

(Code omitted)

To make the application more user friendly, the rest part of this function swaps the
directory node image from the image representing open directory
(IDB_BITMAP_OPENFOLDER) to the one representing closed directory
(IDB_BITMAP_CLOSEFOLDER) when the node is collapsing and vice versa when it is
expanding.

14.9 Simple Explorer, Step 7: File Sort

Sample 14.9\Explorer is based on sample 14.8\Explorer, it implements file sorting.

When the list items are displayed in "Report" style, one thing we can implement is to
sort all the files by different attributes. For example, if we click on "Name" column, all
the files should be sorted by their names; if we click on "Size" column, all files should
be sorted by their sizes; if we click on "Type" column, all the files should be sorted by
their extensions; if we click on "Updated" column, all the files should be sorted by their
updated dates and times.

Sort Related Functions

We can call function CListCtrl::SortItems(...) to implement item sorting. This function
has two parameters:

BOOL CListCtrl::SortItems(PFNLVCOMPARE pfnCompare, DWORD dwData);

The function's first parameter is a little special, which is the pointer to a callback
function provided by the programmer. The callback function will be used to perform
actual comparison. This is because when comparing two items, class CListCtrl has no
way of knowing which item should precede the other. In order to provide our own
rules of making comparison, we need to implement the callback function.

The callback function has the following format:

int CALLBACK CompareFunc(LPARAM lParam1, LPARAM lParam2, LPARAM
lParamSort);

In order to compare two items, we need to provide each item with a parameter,
which is an LPARAM type value. When two items are compared, their parameters will
be passed to the callback function, which will return different values indicating
which item should precede the other. If the first item (whose parameter is lParam1)
should precede the second item (whose parameter is lparam2), the function needs
to return -1; if the first item should follow the second item, the function needs to
return 1; if the two items are equal, the function needs to return 0.

When calling function CListView::SortItems(...), we can pass different pre-defined
values to parameter dwData, which will be further passed to parameter lParamSort
of the callback function. This provides us with a way of specifying different types of
sorting methods.

Adding Parameters to Items

By now, when creating an item, we did not specify any parameter for it. Actually,
any item in the list control can store a 32-bit parameter which can be used to
distinguish one item from another. Of course the item index can also be used for this
purpose. However, since the relative positions of two items can change frequently,
the index of an item is also not fixed. Since the only information passed to the
callback function about an item is its parameter, we must make it unique for any
item.

In the sample, function CBrowserView::ChangeDir() is customized as follows: when a
new item is added to the list control, we set its parameter to its initial index and use it
as the identification of this item. This parameter will not change throughout its
lifetime:

(Code omitted)

Functions Implementing Comparisons

Four static member functions are implemented for doing different types of

comparisons:

(Code omitted)

Actually, in the callback function, one of the above functions is called to perform
the comparison according to parameter lParamSort:

(Code omitted)

Please note that the callback function must be either a global function or a static
member function. So within it we cannot call CListView::GetListCtrl() directly to
obtain the list control. Instead, we must first obtain the current instance of list view,
then use it to call function CListView::GetListCtrl() and obtain the list control. This is
why at the beginning of the callback function the current active document is first
obtained, from which the current active list view (and the list control) is obtained.

Using Parameter to Find an Item

Within the function that implements comparison, the only information we know
about an item is its parameter. This is not enough for making comparison. We need
to obtain the item and get more information (In our sample, this includes file name,
extension, type, and updated time) before proceeding to compare the two items.

An item can be obtained from its parameter by calling function
CListCtrl::FindItem(...). In order to call this function, we need to stuff a LV_FINDINFO
type object specifying what information is provided for item searching. To search an
item by its parameter, we need to set LVFI_PARAM bit of member flags of the
structure, and assign the parameter to member lParam. In the sample, a static
member function CExplorerView::FindItem(...) is implemented, it can be called from
any static member function to find an item using its parameter:

(Code omitted)

Here a LV_FINDINFO type object is stuffed, with LVFI_PARAM bit of member flags set
to "1" and the item parameter assigned to member lParam. Then the object is
passed to function CListCtrl:: FindItem(...) to search the item in the list control.
Function CExplorerView::FindItem(...)'s second parameter is a CListCtrl type
reference, this is because within static member function, we must use the instance of
an object to call any of its non-static functions. This function returns the current index
of the corresponding item.

Comparing Two Items by File Names

The procedure of comparing two items is described in the following paragraphs.

First we pass the parameters of the items to function CExplorerView::FindItem(...) to
retrieve their current indices. After the indices are obtained, we stuff a LV_ITEM type
object, set LVIF_IMAGE bit of member mask to "1" and call function
CListCtrl::GetItem(...). Since in the sample, a directory item is always associated with
the default image (In the image list, the image index is 0), we can use an item's
image index to tell if it represents a directory or a file. For different situations, the
comparing function will return different values (In the sample, a directory always
preceeds a file item):

(Code omitted)

In case both items are directories or files, we need to further compare their names.
Since file names under Windows(are case insensitive, we neglect character case
when performing the comparison. The comparison is done within a for loop, which
starts from the first characters and ends under one of the following situations: 1) The
two compared characters are different, in which case the character that has the
greater value belongs to the item that should follow the other. 2) One of the strings
reaches its end. In this case the item with longer file name should follow the other. If
two strings are exactly the same, the function returns 0:

(Code omitted)

Notification LVN_COLUMNCLICK

When the user clicks on one of the columns, the list control sends a notification
message LVN_COLUMNCLICK to its parent window. If we want to handle this
message within the list view, we need to use macro ON_NOTIFY_REFLECT to map the
message to one of its member functions. In the sample, this message mapping is
added through using Class Wizard:

(Code omitted)

Within message handler CExplorerView::OnColumnClick(...), function
CListCtrl::SortItems(...) is called to perform file sorting:

(Code omitted)

14.10 Using Form View

Form view is easy to use because the procedure of implementing it is similar to that
of a dialog box. We can start from building a dialog template, then adding common
controls to the template. Generally everything we can implement in a dialog box
can also be implemented in the form view. The difference between the two is that
when creating dialog template for the form view, we must set its style to "child" and
"no border" (Figure 14-2).

Both tree control and list control can be implemented in a form view. Sample
14.10\Explorer is based on sample 14.9\Explorer whose left pane of the splitter
window is implemented by a form view. Within the form view, a tree control is
implemented for displaying directories. We will see, it is almost the same to use tree
control in a form view with using a tree view directly.

New Class and Dialog Template

We must add a new view that is based on class CFormView. This can be
implemented by using Class Wizard. Because a form view must be associated with
dialog template, before adding the new class, we need to add a dialog template
(Of course, we can first generate the class then the dialog template, and change
the ID contained in the class to the ID of the dialog template later). When creating
dialog template, we need to delete all the default controls, and customize its style to
"Child" and "No border". Then we can add a tree control to the template, set the
following styles: "Has button", "Has lines", "Line at root". This equals to calling function
::SetWindowLong(...) and setting styles TVS_HASLINES, TVS_LINESATROOT,
TVS_HASBUTTONS for the tree control.

When generating the new class, we can associate the ID of the dialog template to
it. Then, we can add a control variable for the tree control. By doing this, the tree
control can be accessed by directly referring to this variable instead of calling
function CWnd::GetDlgItem(...). In the sample, the newly generated class is named
CDirFormView, the ID of the dialog template is IDD_DIALOG_VIEW, the ID of the tree
control is IDC_TREECTRL, and the variable added for the tree control is
CDirFormView::m_tcDir.

Implementing New Member Functions

We can just copy all the member functions from CTreeView and implement them in
CDirFormView. The only difference is that we must replace all function calls of
CTreeView::GetTreeCtrl() by m_tcDir. Also, we can implement a GetTreeCtrl()
function in class CDirFormView and let it return the reference of m_tcDir. By doing
this, we don't need to change anything else.

The following variables and functions are declared in class CDirFormView, they are
implemented exactly the same as in class CDirView:

char CDirFormView::m_szPath[_MAX_PATH];

CString CDirFormView GetDir(HTREEITEM);

void CDirFormView AddDirs(HTREEITEM, BOOL);

void CDirFormView::AddChildrenChildren(HTREEITEM);

void CDirFormView::OnInitialUpdate();

afx_msg void CDirFormView::OnClickTreeCtrl(NMHDR* pNMHDR, LRESULT* pResult);

afx_msg void CDirFormView::OnItemExpandingTreeCtrl(NMHDR* pNMHDR, LRESULT*
pResult);

Resizing Tree Control

Since the controls contained in the form view does not get resized or repositioned
automatically, we need to move or resize them after receiving message WM_SIZE.
This will make the form view better balanced.

In the sample, function CDirFormView::ResizeTreeView() is implemented to resize the
tree control. After this function is called, the tree control will be resized so that it just
fits within the form view window (A border is left around the tree control). The
following is the implementation of this function:

(Code omitted)

Mouse Cursor Coordinates

Because the dimension of the tree control is not the same with that of the form view,
when function CTreeCtrl::HitTest(...) is called in response to notification NM_CLICK,
we need to convert the coordinates of mouse cursor from form view window to the
tree control window. The following code fragment shows how function
CTreeCtrl::HitTest(...) is called when mouse's left button is pressed:

(Code omitted)

Replacing CDirView with CDirFormView

Now we can replace class CDirView with CDirFormView when creating the splitter
window. This is fairly simple, all we need is to use class CDirFormView to create the
left pane of the splitter window in function CMainFrame::OnCreateClient(...):

(Code omitted)

This new version of Explorer behaves exactly the same with the previous one.
However, with form view, we can add other common controls such as buttons to the
left pane. This will give us more flexibility in improving our application.

Summary

1) A standard text editor can be implemented by class CEditView. This class contains
some member functions that can be used to implement a lot of useful commands:

i) Serialization can be implemented by function CEditView::SerializeRaw(...).

ii) Undo, Cut, Copy and Paste commands can be implemented by the following
undocumented functions: CEditView::OnEditUndo(), CEditView::OnEditCut(),
CEditView::OnEditCopy(), CEditView::OnEditPaste().

iii) String search related commands can be implemented by the following
undocumented functions: CEditView::OnEditFind, CEditView::OnEditReplace,
CEditView::OnEditFindRepeat().

2) Class CRichEditView and CRichEditDoc support formatted text editing. The classes
support two file formats: "rtf" format and plain text format. There is a member variable
contained in class CRichEditDoc: CRichEditDoc::m_bRTF. If we want to open "rtf"
type files, we need to set this variable to TRUE. If we want to edit plain ASCII text, we
need to set this variable to FALSE.

3) To get or set the format of a paragraph, we can stuff structure PARAFORMAT and
call function CRichEditView::GetParaFormat(...) or CRichEditView::SetParaFormat(...);
to get or set the format of characters, we can stuff structure CHARFORMAT and call
function CRichEditView::SetCharFormat(...) or CRichEditView::SetCharFormat(...).

4) To customize "File Open" dialog box, we need to override function
CWinApp::OnFileOpen(...). To customize "Save As" dialog box, we need to override
undocumented function CDocument::DoSave().

5) The following undocumented member functions can be used to implement
commands for formatting characters or paragraph in a rich edit view:

CRichEditView::OnParaCenter();

CRichEditView::OnParaRight();

CRichEditView::OnParaLeft();

CRichEditView::OnCharBold();

CRichEditView::OnCharUnderline();

CRichEditView::OnCharItalic();

6) The styles of tree view and list view can be set by calling function
::SetWindowLong(...). Any style that can be used in function CTreeCtrl::Create(...) or
CListCtrl::Create(...) can be changed dynamically by using this function.

7) We can call function _chdrive(...) to test if a drive (from drive A to drive Z) exits in
the system. If the function returns -1, the drive does not exit. If it returns 0, the drive is
available. We can also call this function to change the current working drive.

8) Class CFileFind can be used to enumerate all the files and directories under
certain directory. To enumerate files and directories, we can call function
CFileFind::FileFind() first then call function CFileFind::FindNextFile() repeatedly until it
returns FALSE.

9) Function CFileFind::IsDirectory() can be used to check if an enumerated object is
a directory. Function CFileFind::IsDot() can be used to check if a directory is "." or "..".

10) Function ::SHGetFileInfo(...) can be used to obtain the embedded or shell icons
for a file.

11) Notification NM_CLICK can be used to trap mouse clicking events on the tree
control. Notification TVN_ITEMEXPANDING indicates that a node is about to expand.

12) When the user clicks mouse on the tree control, we can call function
CTreeCtrl::HitTest(...) to find out the handle of the item that was clicked.

13) We can call function CListCtrl::SortItems(...) to implement item sorting in the list
control. In order to do this, we must assign each item contained in the list control a
parameter, which will be used as the identification of the item. Then we need to
prepare a callback function, within which rules of comparison are implemented.

14) To search for a specific item by its parameter, we can stuff structure LV_FINDINFO
and call function CListCtrl::FIndItem(...).

15) To respond to the mouse clicking events on the columns of the list control, we
need to trap notification LVN_COLUMNCLICK.

BACK TO INDEX

Chapter 15 DDE
Dynamic Data Exchange (DDE) is one of the ways to exchange information and
data among different applications. From samples of previous chapters we already
have some experience on implementing registered message and file sharing, which
allow one process to send simple message or a block of data to another process.
DDE is another way of implementing data exchange, it can handle more
complicated situation than the other two methods.

DDE is constructed under client-server model: a server application exposes its
services to all the applications in the system; any client application can ask the
server for certain type of services, such as getting data from server, sending data to
the server, asking the server to execute a command. The best way to implement
DDE in an application is to use Dynamic Data Exchange Management Library
(DDEML), which is supported by the Windows(. With this library, the implementation
of DDE becomes easy. All the samples in this chapter are based on this library.

MFC does not have a class that encapsulates DDE, so we have to call all the
functions in the DDEML.

15.1 DDE Registration

To support DDE functions, every application (server or client) must implement the
following: 1) Initialize DDE. 2) Provide a callback function that will be used to handle
DDE messages. 3) Uninitialize DDE when the application exits (or when DDE functions
are no longer supported). For the server application, it needs additional two steps: 1)
Register name services after the DDE is initialized. 2) Unregister the name services
before DDE is uninitialized.

DDE Initialization, Uninitialization, Service Registration, Unregistration

DDEML provides functions for everything described above. The following discusses
functions contained in the DDEML that can be used for these purposes:

DDE initialization:

UINT ::DdeInitialize

(

LPDWORD pidInst, PFNCALLBACK pfnCallback, DWORD afCmd, DWORD ulRes

);

An application must implement a DWORD type variable for storing its instance
identifier, which is somehow similar to application's instance handle. When a server is
making conversation with a client, they both must use their instance identifiers to
verify that the message is directed to them. This unique instance ID is obtained
through calling function ::DdeInitialize(...). When calling this function, we need to
pass the address of the DWORD type variable to its first parameter, and the variable
will be filled with the instance ID.

The second parameter is the pointer to a callback function, which will be discussed
later.

The third parameter is the combination of different flags, which can be used to
specify what kind of DDE messages we want to receive. This is useful because there
are a lot of services provided by the DDE model. Sometimes we do not want certain
types of messages to be sent to our applications. In this case, we can pass
parameter afCmd a combination of filter flags, which will allow only certain type of
messages to be sent to the application. The following table shows some examples:

(Table omitted)

DDE uninitialization:

BOOL ::DdeUninitialize(DWORD idInst);

The only parameter of this function is the value obtained from function
::DdeInitialize(...).

DDE name service registration and unregistration:

HDDEDATA ::DdeNameService(DWORD idInst, HSZ hsz1, HSZ hsz2, UINT afCmd);

Again, idInst is the DDE instance ID which is obtained from function ::DdeInitialize(...).
The second parameter is the handle of the name service string, which is a new type
of variable. Actually, it is just a new type of handle that can be obtained by calling
another function supported by DDEML.

In DDE, data is exchanged through sending string handles among different
applications. For example, if we have a string that is contained in a series of buffers,
we cannot send the buffers' starting address to another process and let the string be
accessed there. To let the string be shared by other DDE applications, we need to
create a string handle and let it be shared by other applications. With the handle,
any application can access the contents contained in the buffers. In DDEML,
following two functions can be used to create and free string handle:

HSZ ::DdeCreateStringHandle(DWORD idInst, LPTSTR psz, int iCodePage);

BOOL ::DdeFreeStringHandle(DWORD idInst, HSZ hsz);

For the first function, we can pass the string pointer to parameter psz, and the
function will return a string handle. When the string is no longer useful, we need to
call function ::DdeFreeStringHandle(...) to free the string handle.

When registering a service name, we must use a string handle rather than the service
name itself.

A service name is the identifier of the server that lets the client applications find the
server when requesting a service. We can use any string as the service name so long
as it is not identical to other DDE service names present in the system. When a client
requests for services from the server, it must obtain a string handle for the service
name and use it to communicate with the server.

DDE Callback Function

The DDE callback function is similar to the callback functions implemented for
common dialog boxes and hooks, except that the situation is more complicated
here. A DDE callback function has 8 parameters, which may have different
meanings for different messages. The basic form of the callback function is as
follows:

(Code omitted)

The most important parameter here is uType, which indicates what kind of message
has been sent to this application. There are many types of DDE messages. In the
callback function, we can return NULL if we do not want to process the message.
Standard DDE messages will be explained in the following sections.

Server

Sample 15.1\DDE\Server is a standard SDI application generated by Application
Wizard. The view of this application is based on class CEditView, so that it can be
used to display current server states. The sample is a very basic DDE server, which

implements DDE registration and name service registration but actually provides no
service. In the sample, the service name is "Server". All the DDE functions are
implemented in the frame window. In the sample, function
CMainFrame::InitializeDDE() is called to initialize DDE. This function is called after the
client view is created:

(Code omitted)

Function CMainFrame::InitializeDDE() simply calls ::DdeInitialize(...) with appropriate
parameters, if the function returns DMLERR_NO_ERROR, it further proceeds to register
the name service:

(Code omitted)

Here CMainFrame::m_dwInst is a DWORD type static variable and
CMainFram::DdeCallback(...) is a static member function. This is because a callback
function must be either a global function or a static member function. Function
CMainFrame::Hszize() can be used to obtain a string handle for the name service
and store the handle in static variable CMainFrame::m_hszServiceName. When the
application exits, the name service is unregistered and also, the DDE is uninitialized
there. This is implemented in WM_CLOSE message handler:

(Code omitted)

Also, the string handle is freed here. In the sample, functions CMainFrame::Hszize()
and CMainFrame:: UnHszize() are implemented for obtaining and freeing string
handles respectively:

(Code omitted)

(Code omitted)

Here CMainFrame::m_szService is a static variable.

Monitoring DDE Activities

To monitor the activities of the server, function CMainFrame::Printf(...) is implemented
in the sample. This function imitates the well-known function prinf(...), and outputs a
formatted string to the client window. We can use it exactly the same way as we use
function printf(...). Since the view of the sample is based on class CEditView, it is easy
for us to display text in the client window. Since the client window is solely used for
displaying information, we need to set the window's ES_READONLY style before the it
is created:

(Code omitted)

Because function CEditCtrl::ReplaceSel(...) is used to output text to the edit view in
function CMainFrame::Printf(...), we further need to prevent the cursor position from
being changed by the user (Function CEditCtrl::ReplaceSel(...) will always output text
at the current caret position). For this reason, the following messages are handled to
bypass the default implementations in the sample: WM_LBUTTONDOWN,
WM_LBUTTONUP, WM_MOSUEMOVE and ON_WM_LBUTTONDBLCLK. The handlers of
these messages are empty. This will prevent the application from responding to the
mouse events so that the cursor position can not be changed under any condition.

If we execute the sample at this point, messages will appear on the client window
indicating if the DDE initialization is successful.

15.2 Connecting to Server

Sample 15.2\DDE\Server is based on sample 15.1\DDE\Server. Also, a new sample
15.2\DDE\Client is created in this section, which is a dialog-based application.

At the beginning, the client also needs to do DDE initialization in order to support
DDE. The client initialization procedure is almost the same with that of server except
that it does not need to register the service name. The client needs to call functions
::DdeInitialize(...) and ::DdeUninitialize(...) for DDE initialization and clean up. Besides,
it also needs to prepare a static (or global) DWORD variable for storing its instance
identifier, and prepare a callback function that will be used to receive DDE
messages.

DDE Connection: Client Side

Before requesting any service from the server, the client needs to make DDE
connection. This is somehow similar to making a phone call: we need to dial number
and make the connection first, then we can request the other side to do anything
for us.

The client can call function ::DdeConnect(...) to set up a connection with the server:

HCONV ::DdeConnect(DWORD idInst, HSZ hszService, HSZ hszTopic, PCONVCONTEXT
pCC);

We need to provide three parameters in order to make the connection: the client
instance ID, the server's service name, and the topic name that is supported by the
server.

While the service name is the identification that can be used by the client to locate
the server in the system, a topic name indicates the type of service which is

provided by the server. A server can provide more than one service, whose
properties and features can be defined by the programmer. For example, we can
implement a DDE server managing images, and a client can request the server to
send any image to it. For this service, we can name the topic name "image" (or
whatever).

Like the service name, a string handle must be obtained for the topic name before it
is used. When function ::DdeConnect(...) is called from the client side, this handle
must be passed to its hszTopic parameter.

The server does not need to register the topic name. When the client makes the
connection, the server will receive a XTYP_CONNECT message, and the topic name
string handle will be passed as one of the parameters to the DDE call back function.
Upon receiving this message, the handle passed with the message can be
compared with the topic string handles stored on the server side (which represent all
the topics supported by the server). If there is a match, it means the server supports
this topic, otherwise the server should reject the connection.

DDE Connection: Server Side

On the server side, we need to handle XTYP_CONNECT message in the callback
function. In the previous section, NULL is returned for all messages sent to the server.
In order to respond to the connection request from the client, XTYP_CONNECT
message must be processed.

As we mentioned before, the callback function has 8 parameters. Parameter uType
indicates the type of message, if the message is a connection request, this message
should be XTYP_CONNECT. The meanings of other 7 parameters are listed as follows:

(Table omitted)

In the sample of the previous section, a service name "Server" is registered on the
server side. To let the connection be set up between the server and the client, we
also need to prepare a topic name that will be used by both sides. In the sample
15.2\DDE\Server, string "Topic" is used as the topic name, whose string handle is
obtained in function CMainFrame::Hszize() and freed in function
CMainFrame::UnHszize().

The client should also obtain a string handle for the topic name and use it to make
connection. The server will receive the handles of service name and topic name
together with message XTYP_CONNECT. Upon receiving this message, the server
needs to check if the service name and topic name requested by the client are
supported by itself.

To compare two strings by their handles, we can call function

::DdeCmpStringHandles(...), which will compare two DDE strings. When calling this
function, we need to pass the string handles to its two parameters. The function will
return -1, 0 or 1 indicating if the first string is less than, equal to, or greater than the
second string. The following is the format of this function:

int ::DdeCmpStringHandles(HSZ hsz1, HSZ hsz2);

Now it is clear what the server should do after receiving XTYP_CONNECT message:
comparing hszAppName with its registered service name, and comparing hszTopic
with its supported topic names by calling function ::DdeCmpStringHandles(...). If the
comparisons are successful, the callback function should return TRUE, this indicates
the connection request is accepted. Otherwise it should return FALSE, in which case
the connection request is rejected. The following code fragment shows how this is
implemented in sample 15.2\DDE\Server:

(Code omitted)

Client Implementation

Sample 15.2\DDE\Client is implemented as a dialog based application using
Application Wizard. Similar to the server, here an edit control is included in the dialog
template that will be used to display DDE activities. The DDE initialization procedure is
implemented in function CDDEDialog::OnInitDialog(). There is also another edit box
and a button labeled "Connect" in the dialog box. When the user clicks this button,
the application will retrieve the string from this edit box, use it as the topic name and
call function ::DdeConnect(...) to connect to the server:

(Code omitted)

The value returned by function ::DdeConnect(...) is a handle used for conversation.
Every time the client want to make a transaction to the server, it must present this
handle. By using the handle, the server knows with whom it is talking with.

In case the connection is not successful, function ::DdeConnect(...) will return a
FALSE value.

Confirm Connection

On the server side, if the connection is successful, it will further receive an
XTYP_CONNECT_CONFIRM message from the client. In this case, apart from hszTopic
and hszAppName parameters, hconv is also used to provide the conversation
handle that should be used by the server to make further conversation with the
client. The following code segment shows how this message is processed on the
server side:

(Code omitted)

Variable m_hConvServer is a static variable declared in class CMainFrame and is
initialized to NULL in the constructor.

DDE Disconnection

After the connection is set up, the client and server can proceed to initiate various
types of transactions. We will show this in later sections. After all the transactions are
finished, or if one side wants to exit, the conversation must be terminated. Either the
server or the client can terminate the conversion. This can be implemented by
calling function ::DdeDisconnect(...) using the conversion handle. This function can
be called either from the server or from the client side. Once the message is sent, the
other side will be notified of the disconnection by receiving an XTYP_DISCONNECT
message.

In the sample, once the connection is set up, it can be terminated from the client
side by pressing "Disconnect" button or from the server side through executing DDE |
Disconnect command. This is implemented as follows:

The server side:

(Code omitted)

The client side:

(Code omitted)

The following shows how message XTYP_DISCONNECT is handled in both sides:

The client side:

(Code omitted)

The server side:

(Code omitted)

Test

We can test this version of DDE client and server by starting both applications, then
inputting "Topic" into the edit box contained in the client dialog box, and clicking
"Connect" button (see Figure 15-1). After this, we will see that the server will output
some information indicating if the connection is successful. Then, we can terminate

the conversation either from the client or from the server side. We can also try to use
an incorrect topic name while making the connection, this will cause the
connection to be unsuccessful.

To prevent the application from exiting without terminating the conversation, both
client and server need to check if the conversation is still undergoing while exiting. If
necessary, function ::DdeDisconnect(...) will be called before the applications exit.

Figure 15-2 explains the procedure of DDE connection and disconnection.

(Figure 15-2 omitted)

15.3 Transaction: Data Request

Samples 15.3\DDE\Server and 15.3\DDE\Client are based on samples
15.2\DDE\Server and 15.2\DDE\Client respectively.

There are several types of transactions, one of which is XTYPE_REQUEST, it can be
used by the client to request the server to send up-to-date value of an item to it.

We know that there are two names that are used to set up a connection: the service
name and the topic name. The service name is used to locate the server and the
topic name is used to specify a general topic. Under any topic there may exist
several items, each item also needs an item name. When the client wants to request
a transaction from the server, it needs to specify the item name.

For example, if a server provides a service that sends different type of data to the
client(s), there may be different topics such as "Image", "Text" (indicating different
type of data). Under each topic, there may exist different items such as "Image A",
"Image B", "Text 1", "Text 2".

Data Request Transaction: Client Side

The client should call function ::DdeClientTransaction(...) to initiate a transaction:

(Code omitted)

We need to pass different types of data to parameters pData, cbData, wFmt and
wType for different types of transactions. If the transaction requires the client to pass
data to the server (Besides data request transaction, there exist other transactions
that can be used by the client to send data to server), we need to use parameters
pData and cbData to pass the data, and use parameter wFmt to specify the data
format. If the client is requesting data from the server, it should specify the format of
data by passing standard or user-defined format to parameter wFmt. In case the
client is not sending data to the server, we can neglect parameters pData and

cbData. Parameter wType can be used to specify the type of transaction the client
is requesting from the server. In the case of data request transaction, this parameter
must be set to XTYP_REQUEST. The meanings of the rest four parameters are the same
for all types of transactions, which are listed in the following table:

(Table omitted)

For synchronous transmission mode (the asynchronous transmission mode will be
introduced in a later section), after the client calls this function, a timer will be set
(the time out value is specified by parameter dwTimeout). If there is no response
from the server, the function does not return until the timer times out. We can specify
an appropriate value to prevent the program from getting into the deadlock.

Data Request Transaction: Server Side

Calling this function from the client side will cause the server to receive an
XTYP_REQUEST message. The server should check parameter uFmt, hConv, hszTopic
and hszAppName, whose meanings are listed in the following table:

(Table omitted)

The server must check if it supports the topic and the specific item, as well as the
data format. If it supports all of them, the server must prepare data using the
required format and send the data back to client.

Preparing Data

One way to send data to the client is to prepare data in server's local buffers, then
create a handle for this data, and send the handle to the client. The data handle
can be obtained by calling function ::DdeCreateDataHandle(...), which has the
following format:

(Code omitted)

The data can also be sent through a pointer. We will discuss this in a later section.

The following table explains the meanings of the above parameters:

(Code omitted)

We can use standard clipboard format such CF_TEXT, CF_DIB to pass data. If we
define a special data format, we must register it before passing the data.

Receiving Data

Because data is not sent directly, the client must obtain the required data from the
handle first. For synchronous transmission mode, the data handle will be returned
directly from function ::DdeClientTransacton(). In case the transaction is not
successful, a NULL value will be returned.

After receiving the handle, the client must first call function ::DdeAccessData(...) to
access the data. After the data is processed, function ::DdeUnaccessData(...) must
be called to "unaccess" the data. If the data is created with HDATA_APPOWNED
flag, the client should not free the data. Otherwise, it can release the data by calling
function ::DdeFreeDataHandle(...).

Samples

In the sample application, an item "Time" is supported by the server under "Topic"
topic name. When the client request an XTYPE_REQUEST transaction on this item, the
server get the current system time and send it to the client. The client then displays
the time in one of its edit box.

Compared with the samples in the previous section, a new edit box and a button
labeled "Request" are added to the dialog box (Figure 15-3). The edit box is read-
only, which will be used to display the time obtained from the server. The button is
used to let the user initiate the request transaction.

The following function shows how the client initiates the transaction after the user
clicks "Request" button, and how the client updates the time displayed in the edit
box if the transaction is successful:

(Code omitted)

The following code fragment shows how the server responds to message
XTYPE_REQUEST, prepares data and sends it to the client:

(Code omitted)

15.4 Transaction: Advise

Basics

Another interesting transaction is Advise, which provides a way to let the server
inform the client after an item stored on the server side has changed. The advise
transaction can be initiated from the client side by initiating XTYP_ADVSTART type
transaction. As the server receives this message, it keeps an eye on the item that is
required by the client for advise service. If the data changes, the server will receive
an XTYP_ADVREQ message indicating that the item has changed (This message is

posted by the server itself, which could be triggered by any event indicating that the
topic item has changed. For example, for "time" item discussed in the previous
section, it could be triggered by message WM_TIMER). After receiving message
XTYP_ADVREQ, the server sends an XTYP_ADVDATA message along with the handle
of the updated data to the client. After the client receives this message, it updates
the advised topic item.

Now that we understand how XTYP_REQUEST type transaction is handled, it is easier
for us to figure out how the advise transaction should be implemented. First, the
client initiates advise transaction by calling function ::DdeClientTransaction(...) and
passing XTYP_ADVSTART to parameter wType. Upon receiving this message, the
server must return TURE if it supports the specified topic and item; otherwise, it should
return FALSE. Once the data has changed, the server should call function
::DdePostAdvise(...) to let its callback function receive an XTYP_ADVREQ message.
Upon receiving this message, the server needs to prepare the data and send the
data handle to the client (There is no special function for doing this, all the server
needs to do is returning the data handle from the callback function). Once the
server has provided advise, the client will receive an XTYP_ADVDATA message along
with the data handle. After receiving this message, the client should update the
advised item. The client can terminate the advise service at any time by sending
XTYP_ADVSTOP message through calling function ::DdeClientTransaction(...).

Initiating Advise Transaction

In the samples contained in 15.4\DDE\, a new topic item "Text" is added to both
client and server, which will be used as an example for advise transaction. Like "Time"
item, a new edit box and a button labeled "Advise" are also added to the dialog
box (Figure 15-4). On the server side, a variable CMainFrame::m_szText is declared
and the user can edit this string through dialog box IDD_DIALOG_ADVISE. The
following code fragment shows how the client initiates XTYPE_ADVSTART transaction
after the user clicks "Advise" button:

(Code omitted)

It is more or less the same with XTYP_REQUEST transaction. If the transaction is
successful, we set a Boolean type variable CDDECliDlg::m_bAdvise to TRUE and
change the button's text to "Unadvise". By doing this way, the button can be used for
both advise starting and stopping.

Advise Transaction Responding

On the server side, after message XTYP_ADSTART is received, it checks the topic
name, item name, and the data format specified by the client (just like data request
transaction). If the server supports all of them, it sets a Boolean type variable
CMainFrame::m_bAdvise to TRUE. This is a flag, if it is TRUE, whenever the user

modifies the content of CMainFrame::m_szText variable (it is the advised item stored
on the server side, which can be modified by a new command added to the
application, see below for detail), function ::DdePostAdvise(...) will be called. The
following code fragment shows how message XTYP_ADSTART is processed on the
server side:

(Code omitted)

On the server side, a new command DDE | Advise is added to mainframe menu
IDR_MAINFRAME. The following function shows how this command is implemented. If
the user changes the content contained in variable CMainFrame::m_szText (if flag
CMainFrame::m_bAdvise is TRUE at this time), message XTYP_ADVREQ will be posted
to the server:

(Code omitted)

Upon receiving message XTYP_ADVREQ in the DDE callback function, we must
prepare a string handle for CMainFrame::m_szText, and return it when the function
exits:

(Code omitted)

Again, the data handle is created by calling function ::DdeCreateDataHandle(...). If
the server doesn't support this service, it should return FALSE.

Upon Receiving Advise

This will again cause the client to receive XTYP_ADVDATA message. The data handle
will be passed through parameter hData, which should be accessed through calling
function ::DdeAccessData(...). After the data is obtained, the client need to call
function ::DdeUnaccessData(...) to stop accessing the data, and call function
::DdeFreeDataHandle(...) to free the data. If these procedures are successful, the
client's DDE callback function should return a DDE_FACK value, otherwise it should
return a DDE_FNOTPROCESSED value. The following code fragment shows how
message XTYP_ADVDATA is processed on the client side:

(Code omitted)

Terminating Advise Transaction

The advise can be terminated from the client side by sending message
XTYP_ADVSTOP to the server:

(Code omitted)

On the server side, after receiving this message, it simply turns off
CMainFrame::m_bAdvise flag. After this, if the user updates variable
CMainFrame::m_szText, function ::DdePostAdvise(...) will not be called.

15.5 Transactions: Poke and Execute

Sample 15.5\DDE\Server and 15.5\DDE\Client are based on sample
15.4\DDE\Server and 15.4\DDE\Client respectively.

The poke transaction is the opposite of request transaction: the client can use this
transaction to send data to the server. The transaction is relatively simple: the client
initiates the transaction by sending a message along with the data handle to the
server. After the server receives the message, it can obtain the data from the data
handle.

Like require and advise transactions, poke transaction also needs a topic name and
an item name. In the samples contained in 15.5\DDE\, a new item "Poke" is
supported by both the server and the client. Also, a new edit box and a new button
labeled "Poke" are added to the client dialog box (see Figure 15-5). The user can
input any string into the edit box, and use poke transaction to send it to the server.

Poke Transaction: Client Side

The procedure of preparing data and calling function ::DdeClientTransaction(...) is
very similar to that of request transaction. The difference between two types of
transactions is that here it is the client that needs to prepare the data handle. In
sample 15.5\DDE\Client, the user can input any string into the edit box and send it
to the server.

By now when sending data between two DDE applications, we always use data
handle. An alternate way of sending data is to use a pointer that contains the
address to the data buffers. (The samples contained in 15.5\DDE use data handle.
We will see an example using pointer to transfer data in a later section). When the
client calls function ::DdeClientTransaction(...), the first parameter can be set to
either a string handle or a string pointer. If it is string handle, the second parameter
must be 0xFFFFFFFF. If the first parameter is a string pointer, the second parameter
must specify the length of the buffers.

The following code fragment shows how the client initiates a poke transaction in
sample 15.5\DDE\Client:

(Code omitted)

Poke Transaction: Server Side

The server will receive an XTYP_POKE message. In the samples contained in
15.5\DDE, the server obtains the data from the string handle and calls function
CMainFrame::Printf(...) to display the string in the client window, then return a
DDE_FACK value. If the server does not support either topic name, item name or the
format, it should return a DDE_FNOTPROCESSED value.

Transaction: Executing Commands

Another type of transaction is execute. By using this type of transaction, the client
can send commands to the server and let them be executed at the server side. This
transaction is different from all other type of transactions because it does not need
an item name and does not require format specification. We need to pass NULL to
parameter hszItem (string handle of the item name) and parameter wFmt when
calling function ::DdeClientTransaction(...) to initiate execute transaction. However,
a text string must be used to specify the command (The command must be
specified by parameters pData and cbData). In the samples, the execute
transaction is implemented similar to that of poke transaction: an edit box and a
button labeled "Execute" are added to the dialog box, the user can input any
command into the edit box and click "Execute" button to execute it. The following
code fragment shows how this is implemented on the client side:

(Code omitted)

Rather than using data handle, the address of the buffers will be used to transfer
data. So when the client calls ::DdeClientTransaction(...) to initiate transaction, the
first parameter of this function is set to the address rather that the handle of the
buffers. Also, the second parameter is set to the size of buffers instead of 0xFFFFFFFF.
Since there is no need to specify item name and data format, the fourth and fifth
parameters are set to NULL.

The address of the buffers will not be sent directly to the server. Instead, they will be
used to create a DDE object that contains the data. So as the server receives the
corresponding message, it actually gets the handle of this DDE object instead of the
buffer address. In order to access the data, it must prepare some buffers allocated
locally and copy the data from the DDE object into these buffers by calling function
::DdeGetData(...), whose format is as follows:

DWORD ::DdeGetData(HDDEDATA hData, LPBYTE pDst, DWORD cbMax, DWORD
cbOff);

Parameter hData is the handle received from the DDE callback function that
identifies the DDE object. Parameter pDst is a pointer to the buffers that will be used
to receive data, whose size is specified by parameter cbMax. Parameter cbOff
specifies the offset within the DDE object.

Generally we do not know the size of data beforehand, so before allocating buffers,
we can call this function and pass NULL to its pDst parameter, which will cause the
function to return the actual size of the data. Then we can prepare enough buffers,
pass the address of buffers and the buffer length to this function to actually receive
data.

In the samples, when the client initiates an execute transaction, the server does
nothing but displaying the command in its client window. Although it seems like poke
transaction, there are some radical differences between two types of transactions:

1) The poke transaction can be used to transmit any type of data, it requires a
format specification. The execute transaction only transmit a simple command.

2) The poke transaction must specify an item name. The execute transaction does
not require this.

3) As we will see in section 15.7, the server will respond to execute transaction by
executing a command. The poke transaction just update data.

The following code fragment shows how the execute transaction is implemented on
the server side:

(Code omitted)

15.6 Asynchronous Transaction

Synchronous vs. Asynchronous

By now all our transactions are implemented by synchronous transmission mode. An
alternative way of implementing them is using asynchronous transmission mode. The
difference between two types of transactions is listed as follows:

Synchronous transaction: after the client initialized the transaction, it will start a timer
and wait till it gets the response from the server. If there is no response when timer
times out, the transaction will be terminated.

Asynchronous transaction: after the client initialized the transaction, it does not wait.
Instead, the client will go on to do other job. After the server finished the transaction,
the client will receive a message indicating that the previous transaction has been
finished.

Synchronous transaction is simple to implement. However, if the server responds very
slowly, it will cause severe overhead. In our sample, synchronous transaction is good
enough because the server supports only very limited types of services and each
transaction won't take much time. But generally a server may need to serve multiple

clients simultaneously, so when a client initialized a transaction, the server may be
busy with another transaction. If we use synchronous transaction, the client may
need to wait until the server comes to serve it. If we have several clients waiting
concurrently, it will waste the system resource.

The asynchronous transaction is implemented more efficiently. As the client initialized
the transaction, it just moves on to do other job; when the server finishes this
transaction, the client will receive a message telling it the result of the transaction. In
this case the client's waiting time is eliminated.

Implementing Asynchronous Transaction

In DDEML, asynchronous transaction can be initiated very easily. The only difference
between initializing a synchronous transaction and an asynchronous transaction is
that instead of specifying a time out value, we need to pass TIMEOUT_ASYNC to
parameter dwTimeout when calling function ::DdeClientTransaction(...). Another
difference is that instead of receiving a value (usually the result of the transaction)
from function ::DdeClientTransaction(...) directly, the client will receive an
XTYP_XACT_COMPLETE message and the result of the transaction will be passed
through parameter hData of the callback function. Figure 15-6 illustrates the
difference between two type of transactions.

Samples

Samples 15.6\DDE\Server and 15.6\DDE\Client are based on Samples
15.5\DDE\Server and 15.5\DDE\Client respectively. In the two samples, the poke
transaction is implemented in asynchronous mode. The following code fragment
shows how the transaction is initiated:

(Code omitted)

The following code fragment shows how the transaction result is processed when the
client receives an XTYP_XACT_COMPLETE message:

(Code omitted)

There is no change on the server side.

All types of transactions can be implemented by either synchronous or asynchronous
mode.

15.7 Program Manager: A DDE Server

By now, we have introduced some of the most useful DDE transactions. We can use

these data transfer protocols to design and build applications that can share data
and information. Besides this, we can also write client application to communicate
with standard DDE servers contained in the system.

Program Manager

Under Windows, all types of applications are managed into groups. By clicking on
Start | Programs command on the task bar, we will see many groups, such as
"Accessories", "Startup". Within each group, there may exist some items that are
linked directly to executable files, or there may exist some sub-groups. Sometimes we
may want to modify this structure by adding a new item or deleting an existing item.

Actually this structure is managed by Program Manager, which is a DDE server. We
can interact with this server to create group, delete group, add items to the group,
delete items from a group through initiating Execute transactions.

The client sample from the previous section is modified so that it can be used to
communicate only to Program Manager. Here, the service name of the Program
Manager is "Progman". As we can see, the DDE initialization for this client is exactly
the same as we did before.

The five commands we will ask the server to execute are: creating group; bringing
up an existing group; deleting a group; creating an item; deleting an item. All the
DDE commands must start and end with square braces ('[' and ']'). The following
table lists the formats of five commands:

(Table omitted)

A combo box for storing the command types is added to sample's dialog box.
Besides this, the dialog box also contains an edit box and a button labeled
"Command". The edit box will be used to let the user input parameters for the
command. For example, if we want to create a group with name "Test", we can
select "Create group" from the combo box and input "Test" into the edit box then
click "Command" button. The application will initiate an execute transaction to the
Program Manager and send "[CreateGroup(Test)]" command to it.

We can use this program to create groups and add items to a group. We can also
delete unwanted groups or remove items from a group.

Summary

1) To support DDE in an application, function ::DdeInitialize(...) must be called to
initialize it; also, before the application exits, function ::DdeUninitialize(...) must be
called to uninitialize the DDE.

2) The server must register DDE service by calling function ::DdeNameService(...).
Before the server exits, it must call the same function to unregister the service.

3) Before DDE client initiates any transaction, it must call function ::DdeConnect(...)
to obtain a conversation handle that can be used to identify the server in the
following transactions.

4) A server can support several topics, under each topic there may be several items
supported. When initiating a transaction, the client need to specify both of them.

5) Data can not be exchanged directly between two processes. Instead, it must be
sent either by data handle or by DDE object. In the former case, the data can be
accessed by calling functions ::DdeAccessData(...). Function ::DdeUnaccessData(...)
can be used to unaccess data and ::DdeFreeDataHandle(...) can be used to free
data. In the later case, the data can be retrieved by calling function
::DdeGetData(...). To create a data handle, we can use function
::DdeCreateDataHandle(...).

6) In DDE model, two strings can be compared by their handles. In order to do this,
we need to call function ::DdeCmpStringHandles(...).

7) Data request transaction can be used to request data from the server.

8) Advise transaction can be used to let the client monitor the changes on the data
stored on the server side.

9) Poke transaction can be used by the client to update the data stored on the
server side.

10) Execute transaction can be used by the client to let commands be executed on
the server side.

11) There are two types of transmission modes: synchronous and asynchronous.
Synchronous transaction is easy to implement, but asynchronous transaction is more
efficient under certain conditions.

12) Program Manager is a DDE server that supports execute transaction.

BACK TO INDEX

Chapter 16 Context Sensitive Help
Help is a very important feature for all types of applications. Since the user interface
cannot be made intuitive enough to eliminate guessing when the user interacts with
a program, we need to include context sensitive help to tell the user what exactly
each command means. Although the help development is usually not a part of job
for programmers, the persons who are in charge of application development should
cooperate closely with the help developers to create high-quality applications.

16.1 Context Sensitive Help for Menu Commands

Context Sensitive Help

Context sensitive help is supported by the up-to-date versions of MFC. It is more user
friendly than the old style on-line help, and provides an easier way to let the user find
out pertinent help topics. Generally, context sensitive help can be enabled when an
SDI or MDI application is being generated by the Application Wizard (Figure 16-1).

After we've enabled the context sensitive help, a "question mark" button will appear
on the mainframe tool bar (Figure 16-2). If we click on it, the mouse cursor will
change to a question mark. If we use this cursor to click any menu command (or any
part of the application window), the help window will pop up displaying the
description of the item that was just clicked.

Context Sensitive Help for Menu Commands

By default, only the standard items such as caption bar, status bar and standard
commands (File | Open, File | Save, File | print) will support context sensitive help.
Menu commands (or mainframe tool bar commands) added by the programmer
will not support context sensitive help automatically.

By default, contents of help are stored in a rich text format file generated by the
Application Wizard: "AfxCore.rtf". We can find many footnotes within this file, each
footnote corresponds to one help page. To implement the context sensitive help for
a custom menu command, we need to add a new footnote to file "AfxCore.rtf", and
link it to the command.

If the context sensitive help is enabled within the Application Wizard in step 4 (see
Figure 1-1), the help project will be generated automatically. All the files used to

build the help will be contained in a "hlp" directory under the project directory. For
example, if we use the Application Wizard to generate an SDI application named
"Help", the help project will be generated under "Help\hlp\" directory. There will be a
batch file "Makehelp.bat" under the "Help" directory. Also, there are some other
important files under "Help\hlp" directory that are used to build the help. The
following table lists the usages of these files:

(Table omitted)

The help is compiled by a utility named "Microsoft Help Workshop". The executable
file "Hcw.exe" can be found under Visual C directory "~DevStudio\Vc\Bin\". This
utility can compile "*.hpj" file to generate a target help file.

By double clicking on the "*.hpj" file or "*.cnt" file (In "Explorer", they are described as
"Help project file" and "Help contents file" respectively), we can compile the help
project in the help workshop environment. Also, when we compile the application in
Developer Studio, the help project will also be compiled. The help project file (".hpj)
is similar to a make file when we execute C compilers, it contains information about
how to generate the target help file. The help contents file (".cnt") contains the
information of "help topics". If we execute Help | Help Topics command from the
application, the help contents will be displayed in a "Help Topics" property sheet
(Figure 16-3). All the descriptions about the commands and the application are
included in "AfxCore.rtf" and "AfxPrint.rtf" files, we must edit them in order to add
custom help descriptions.

Sample

Because the default help project already has many help items, without the
knowledge of the help project, it is difficult for a programmer to add items for the
newly added commands. Sample 16.1\Help is a standard SDI application
generated by Application Wizard, which demonstrates how to add new help items
and link them to the application commands to support context sensitive help.

New Commands

First, after the standard project is generated, four new commands are added to the
application. These commands are implemented in both the mainframe menu and
the tool bar, and their IDs are ID_HELPTEST_TESTA, ID_HELPTEST_TESTB,
ID_HELPTEST_TESTC and ID_HELPTEST_TESTD respectively. In IDR_MAINFRAME menu,
the new commands are Help Test | Test A, Help Test | Test B, Help Test | Test C, and
Help Test | Test D. In the IDR_MAINFRAME tool bar, we also have four buttons
corresponding to the four command IDs. The message handlers of these commands
are all blank, because we just want to demonstrate how to implement context
sensitive help for them.

Editing "AfxCore.rtf"

We must add four items to the help file in order to link a command to the help. In
order to do this, we must modify file "AfxCore.rtf". The rich text format file can be
edited by a word processor like Microsoft(Word (WordPad is not powerful enough
for this purpose, because it does not support footnote editing). Within this file, each
help item is managed as a footnote. If we want to add a new help item, we just
need to add a new footnote.

To show how to add a footnote to the ".rtf" file, lets assume that we want to add a
footnote for ID_HELPTEST_TESTA command.

Each footnote must be associated with a tag, so that it can be referenced from
inside or outside the file. In Microsoft(Word, we can either add number-based tags
or user-defined tags. To make the tags meaningful, usually we define tags by
ourselves. The tags can be any string, usually they will have some relationship with
the command IDs implemented in the application. For example, we can use
"help_test_A" as the tag for the footnote that will be used to implement help for the
command whose ID is ID_HELPTEST_TESTA.

To add a new tag within Microsoft(Word, first we need to move the cursor to the
bottom of the file, then execute Insert | Break... command. From the popped up
dialog box, we need to check the radio button labeled "Page Break". If we click
"OK" button, a new page will be added to the file (Generally each footnote needs
to use one page, so we need to add page break whenever a new footnote is
added). Now execute Insert | Footnote command, and check the radio button
labeled "Footnote" from the popped up dialog box (in "Insert" section). Then, check
radio button labeled "Custom Mark" (in "Numbering" section) and input a '#' into the
edit box beside it (Figure 16-4). Finally, click "OK" button. Now the client window of
Word will split into two panes, the lower of which will show all footnote tags. The
caret will be placed right after the '#' sign waiting for us to type in the footnote tag.
We can type "help_test_A", then click on the upper pane. Then we can input any
help description for command ID_HELPTEST_TESTA.

Tag "help_test_A" can be referenced either from other footnote pages or from the
application. If we want to let the user jump from one help item to another (for
example, when viewing help on "telp_test_A", the user may want to jump to footnote
"help_test_B" by clicking on a link within the same page), we need to implement links
by editing the ".rtf" file.

Suppose we have added four footnotes for the newly implemented commands:
"help_test_A", "help_test_B", "help_test_C", and "help_test_D", and we want to add
links to the rest of three commands within each footnote page. For example, help
item "help_test_A" may be implemented as illustrated in Figure 16-5:

Under "See Also" statement, there are three links that will direct mouse clicking to
footnotes "help_test_B", "help_test_C" and "help_test_D".

To create this type of links, we need to use special font format. We need to use
double underline style to format the text that will be linked to a footnote (By doing
this, the text formatted with double underline can respond to mouse clicking and
bringing up another help item). Following the underlined text, we need to place the
footnote tag using "Hidden" font style. To let the hidden text be displayed in the
Word editor, we can execute command Tools | Options... and click tab View on the
popped up property sheet. Then within "Nonprinting Characters" section, check
"Hidden Text" check box.

Now we can make a link very easily. First we need to type in and format the text as
illustrated in Figure 16-6:

To format text using double underline, we can select the text, then execute
command Format | Font.... From the popped up property sheet, we can go to
"Font" page and select "Double" form "Underline" combo box. By doing this, the
selected text will be double underlined. To format text using "Hidden Text" style, we
can first select the text, then execute command Format | Font..., go to "Font" page,
make sure that "None" is selected from the "Underline" combo box, and check
"Hidden" check box within "Effects" section.

ID Mapping

In order to support context sensitive help, we must link the footnotes to their
corresponding command IDs. In our case, we need to link "help_test_A" to
ID_HELPTEST_TESTA, "help_test_B" to ID_HELPTEST_TESTB... and so on.

This ID mappings are implemented in ".hm" file, so by opening file "Help.hm" with a
text editor, we will see all the IDs of the help items supported in the sample.
Generally help IDs are generated according to certain rules: it bases the help ID of a
control (or a window) on its resource ID. By default, for a command whose ID starts
with "ID_", MFC generates symbolic help ID by prefixing a character 'H' to the
resource ID. For example, for command ID_HELPTEST_TESTA, the help ID generated
by MFC is HID_HELPTEST_TESTA. For the actual ID value, MFC generates it by adding a
fixed number to the corresponding resource ID value. For example, if the value of
ID_HELPTEST_TESTA is 0x8004, the value of HID_HELPTEST_TESTA would be 0x18004 ¾
here a number of 0x1000 is added to the command resource ID.

By doing this, when the user executes a command in the help mode (When the
mouse cursor changes to a question mark after the user clicks command
ID_CONTEXT_HELP), the application will first find out the resource ID of the command
being executed, add a fixed value, then pass the result to the help. By using this rule
to generate ID for a help item, it is easier for us to implement context-sensitive help.

Although the ID mapping is customizable, which means we can prefix different
character(s) to a resource ID for generating help ID (For example, the help ID of
command ID_HELPTEST_TESTA could be HLID_HELPTEST_TESTA), and we can add any
value to the resource ID to generate a help ID, it is more convenient if we stick to the
rules of MFC. For example, if we add 0x20000 instead of 0x10000 to the resource ID to
make a help ID, we also need to add some code to the program to customize its
default behavior.

Another problem still remains: since we've already added footnotes and defined our
own tags, the command IDs are still not directly linked to the footnote tags. For
example, the help ID of command ID_HELPTEST_TESTA is HID_HELPTEST_TESTA, while
the footnote tag implemented in the help file is "help_test_A". This can be solved by
defining alias names in the help project file. By opening "*.HPJ" file, we will see an
[ALIAS] session. Under this session, a help ID can be linked directly to a footnote tag.
In our case, the footnote tags are "help_test_A", "help_test_B"..., and the help IDs
automatically generated by MFC are HID_HELPTEST_TESTA, HID_HELPTEST_TESTB.... To
link them together, we can add the following to alias session:

[ALIAS]

......

HID_HELPTEST_TESTA=help_test_A

HID_HELPTEST_TESTB=help_test_B

HID_HELPTEST_TESTC=help_test_C

HID_HELPTEST_TESTD=help_test_D

Obviousely, if we use the default help ID strings to implement footnote tags (i.e., use
HID_HELPTEST_TESTA instead of help_test_A as the footnote tag), the ID mapping
could be eleminated.

By doing this, when the user executes certain command in the help mode, the
corresponding help page will be automatically brought up.

Help Topics Dialog Box

The footnotes can also be referenced from "Help Topics" dialog box. This dialog box
is activated when the user executes command ID_HELP_FINDER. The contents
contained in "Help Topics" dialog box are stored in ".cnt" file. To edit this file, we can
open it using Help Workshop. In the Help Workshop, we can add two types of items:
Heading and Tab Entry. A heading will not be linked to any footnote. Under each

heading, we can add several tab entries, which need to be linked to footnotes. A
new item can be added by clicking buttons labeled "Add Above...", "Add Below...".
After that, a dialog box will pop up asking us to input the description text as well as
the help ID (the footnote tag). The description of an item should be input into the
edit box labeled "Title", and the footnote tag should be input into the edit box
labeled "Topic ID" (Figure 16-7).

After making any change to the help project, we need to recompile the project in
order to get the up-to-date help.

To make the help working, both ".hlp" and ".cnt" file must be copied to the directory
that contains the application executable file.

16.2 Context Sensitive Help for Common Controls

Sample 16.2-1\Help and 16.2-2\Help are based on sample 16.1\Help, they
demonstrate how to support context sensitive help in a dialog box.

Supporting Context Sensitive Help in Dialog Box

The previous section describes how to add context sensitive help for commands. We
can also add this fancy feature for common controls contained in a dialog box. To
implement context sensitive help for a dialog box, we can check "Context Help"
check box under "More Styles" page of the "Dialog Properties" property sheet (Figure
16-8). After this type of dialog boxes are invoked, a question mark button will appear
on their caption bars (Figure 16-9). This button has the same functionality with
command ID_CONTEXT_HELP described in the previous section. By clicking on this
button, we will enter help mode, with the mouse cursor becoming a question mark.
As we click any controls contained in the dialog box with this cursor, the help will be
activated and the corresponding help window will be brought up.

ID Naming Rules

Adding context sensitive help for common controls is more complicated than that of
menu commands. First we must add footnotes for each common control contained
in the dialog box, then we need to do the ID mappings.

By default, MFC will generate help IDs for the commands or controls whose resource
IDs start from "ID_", "IDM_", "IDP_", "IDR_", "IDD_" and "IDW_" by prefixing a single
character 'H' to them. Also, the values of these help IDs are generated by adding a
fixed number to the corresponding resource IDs. This fixed number is different for
different types of IDs. For example, for "ID_XXX" and "IDM_XXX" types of IDs, 0x10000
will be added to the resource ID; for "IDP_XXX" type IDs, 0x30000 will be added; for
"IDR_XXX" and "IDD_XXX" types of IDs, 0x20000 will be added; for "IDW_XXX" type IDs,
0x50000 will be added.

By default, the IDs of the common controls in a dialog box all start with "IDC_" prefix,
which is not included in the default mapping. This means we must generate help IDs
by ourselves. Actually, this can be easily achieved. If we open file "Makehelp.bat" (in
our case, this file should be located in "16.2\Help\" directory), we will see that the
help IDs are generated through "Makehm" utility, which can be executed under DOS
prompt.

"Makehm" has the following syntax:

Makehm argument 1, argument 2, argument 3, argument 4 >> "File name"

where

argument 1: prefix of resource ID

argument 2: prefix of help ID

argument 3: base number

argument 4: resource header file name

For example, if we want to generate symbolic help IDs for those IDs prefixed with
"IDC_", and add 0x10000 to the resource IDs to generate actual help IDs, we can
execute this command as follows (Here, the application resource header file name
is "resource.h", and the ".hm" file name is "Help.hm", it is located under the directory
of "Hlp"):

Makehm IDC_, HIDC_, 0x10000, resource.h >> "hlp\Help.hm"

If we include the above statement in file "Makehelp.bat", after executing it, we will
see that all the common controls will have corresponding help IDs in file "Help.hm".

Enabling Context Sensitive Help for Common Controls

In sample 16.2-1\Help, a dialog box IDD_DIALOG is added to the project. The dialog
box supports context sensitive help implementation. There are four controls included
in the dialog box: edit box IDC_EDIT, radio button IDC_RADIO, combo box
IDC_COMBO and a push button IDC_BUTTON. After adding the "Makehm"
command to "Makehelp.bat" file and executing it, we will see the following help IDs
in file "Help.hm":

// Common Controls (IDC_*)

HIDC_EDIT 0x103E8

HIDC_BUTTON 0x103E9

HIDC_RADIO 0x103EA

HIDC_COMBO 0x103EB

Please note that file "Makehm.exe" is located in directory "...DevStudio\Vc\Bin\". We
must set path to this directory in order to execute it from DOS prompt. However, if we
compile the help through Developer Studio or Help Workshop, there is no need to set
the path. An alternate solution that can let us run the batch file from DOS prompt
without setting path is to copy file "Makehm.exe" to the directory that contains file
"Makehelp.bat".

In the sample application 16.2-1\Help, four new footnotes with tags
"common_button", "common_combobox", "common_edit" and "common_radio" are
added to file "AfxCore.rtf". Their alias names are specified in the help project file:

[ALIAS]

......

HIDC_BUTTON=common_button

HIDC_COMBO=common_combobox

HIDC_EDIT=common_edit

HIDC_RADIO=common_radio

This still does not finish context sensitive help implementation for the common
controls. When the user uses question mark cursor to click a common control
contained in the dialog box, by default, it is the ID of the dialog box, not the ID of
the control that will be used to activate the help. To enable context help for each
individual control, we need to call function CWnd::SetWindowContextHelpId(...) for
it, which has the following format:

BOOL CWnd::SetWindowContextHelpId(DWORD dwContextHelpId);

Parameter dwContextHelpId is the help ID of the control. This function can be used
to link a control's resource ID to its help ID.

To make things work, we must use the IDs generated by "Makehm" utility for each

control. In the sample, a function CHelpDlg::SetContextHelpId() (CHelpDlg is the
class used to implement the dialog box) is implemented to set help IDs for all the
common controls contained in the dialog box:

(Code omitted)

First we call function CWnd::GetWindow(...) and use flag GW_CHILD to find out the
first child window contained in the dialog box. Then we call this function repeatedly
using GW_HWNDNEXT flag to find out all the other child windows. The loop will be
stopped after the last child window is enumerated. For each child window (common
control), we obtain its resource ID value by calling function CWnd::GetDlgCtrlID(),
adding 0x10000 to it, and using this value to set help ID.

We must make sure that both utility "Makehm" and function
CWnd::SetWindowContextHelpID(...) add the same value to the resource IDs to
result in help IDs.

Function CWnd::OnHelpInfo(...)

We also need to override function CWnd::OnHelpInfo(...) in order to let the help
jump to a special page when being activated. The following code fragment shows
how this function is overridden in the sample:

(Code omitted)

When the user uses question mark cursor to click a control, by default, function
CWnd::OnHelpInfo(...) will be called, this will not activate help for the common
control being clicked. To customize this, we must check if the help ID corresponds to
one of the common controls contained in the dialog box. If so, we need to activate
the help by ourselves (and jump to the corresponding help page).

The information of the control (or window) will be passed through a HELPINFO type
object. Especially, the help ID will be stored in dwContextId member of this structure.
If we have called function CWnd:: SetWindowContextHelpId(...) for a control, the
value of this ID will be the one we set there. So in our case, the resource ID can be
obtained by subtracting 0x10000 from the help ID.

In the above function, we first check if the control is one of the four controls that
support context sensitive help. If so, function CWinApp::WinHelp(...) is called to
activate the help (The help ID is passed to the first parameter of this function).
Otherwise, default implementation of this function will be called.

Function CWinApp::WinHelp(...) has two parameters:

virtual void CWinApp::WinHelp(DWORD dwData, UINT nCmd=HELP_CONTEXT);

The help will be activated in different styles according to the values of parameter
nCmd. If we do not specify this parameter, the help will be implemented in default
style, and jump to the footnote corresponding to the help ID specified by parameter
dwData. If the help ID could not be found, the first footnote contained in the help
will be displayed and an error message will pop up.

Displaying Help in a Pop up Window

In sample 16.2-2\Help, context help for the controls are displayed in different styles:

(Code omitted)

The edit box and radio button still use the default style, whose help window contains
standard menu and buttons. The help windows of push button and combo box
controls are implemented by pop up window, which is a smaller window with a
yellowish background, and does not contain other controls (Figure 16-10). By passing
different parameters to function CWinApp::WinHelp(...), we can activate "Help
Topic" dialog box. Also, we can adjust its position and size of the help window before
it is displayed,.

Summary

1) In order to implement context sensitive help for a command, we need to add a
footnote to the "AfxCore.rtf" file, then link the command ID to the tag of the
footnote.

2) Usually the help ID is generated by prefixing character(s) to the resource ID of the
command, and the value of the help ID is generated by adding a fixed number to
the value of the resource ID.

3) The resource ID can be linked to a footnote tag by specifying an alias name in
".hpj" file.

4) A help page can be referenced either from other help pages or from the
application.

5) To support context sensitive help in the dialog box, we need to call function
CWnd:: SetWindowContextHelpId(...) for every common control that will support
context sensitive help, and override function CWnd::OnHelpInfo(...) to activate
customized help window.

6) By default, function CWnd::OnHelpInfo(...) does not support context sensitive help
for common controls. In this case, we can call CWinApp::WinHelp(...) to customize
the default help implementation.

7) When calling function CWinApp::WinHelp(...), we can use various parameters to
activate help windows in different styles. For example, using parameter
HELP_CONTEXTPOPUP will invoke a pop up help window.

BACK TO INDEX

	MFC-The Complete Reference
	Essays on MFC
	Advanced MFC Programming
	Introduction to MFC Programming with Visual C+
	New and Cool in MFC 6.
	DevCentral Learning Center
	Chapter 1
	Chapter 2 Menu
	Chapter 3 Splitter Window
	Chapter 4 Buttons
	Chapter 5 Common Controls
	Chapter 6 Dialog Box
	Chapter 7 Common Dialog Boxes
	Chapter 8 DC, Pen, Brush and Palette
	Chapter 9 Font
	Chapter 10 Bitmap
	Chapter 11 Sample: Simple Paint
	Chapter 12 Screen Capturing & Printing
	Chapter 13 Adding Special Features to Application
	Chapter 14 Views
	Chapter 15 DDE
	Chapter 16 Context Sensitive Help

